Cargando…
ADS-HCSpark: A scalable HaplotypeCaller leveraging adaptive data segmentation to accelerate variant calling on Spark
BACKGROUND: The advance of next generation sequencing enables higher throughput with lower price, and as the basic of high-throughput sequencing data analysis, variant calling is widely used in disease research, clinical treatment and medicine research. However, current mainstream variant caller too...
Autores principales: | Xiao, Anghong, Wu, Zongze, Dong, Shoubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376756/ https://www.ncbi.nlm.nih.gov/pubmed/30764760 http://dx.doi.org/10.1186/s12859-019-2665-0 |
Ejemplares similares
-
GPU accelerated sequence alignment with traceback for GATK HaplotypeCaller
por: Ren, Shanshan, et al.
Publicado: (2019) -
The evaluation of Bcftools mpileup and GATK HaplotypeCaller for variant calling in non-human species
por: Lefouili, Messaoud, et al.
Publicado: (2022) -
Efficient Acceleration of the Pair-HMMs Forward Algorithm for GATK HaplotypeCaller on Graphics Processing Units
por: Ren, Shanshan, et al.
Publicado: (2018) -
DECA: scalable XHMM exome copy-number variant calling with ADAM and Apache Spark
por: Linderman, Michael D., et al.
Publicado: (2019) -
BiSpark: a Spark-based highly scalable aligner for bisulfite sequencing data
por: Soe, Seokjun, et al.
Publicado: (2018)