Cargando…
A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification
We address gene selection and machine learning methods for cancer classification using microarray gene expression data. Due to the high dimensionality of microarray data, traditional gene selection algorithms are filter-based, focusing on intrinsic properties of the data such as distance, dependency...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377117/ https://www.ncbi.nlm.nih.gov/pubmed/30768654 http://dx.doi.org/10.1371/journal.pone.0212333 |
_version_ | 1783395696168140800 |
---|---|
author | Nakariyakul, Songyot |
author_facet | Nakariyakul, Songyot |
author_sort | Nakariyakul, Songyot |
collection | PubMed |
description | We address gene selection and machine learning methods for cancer classification using microarray gene expression data. Due to the high dimensionality of microarray data, traditional gene selection algorithms are filter-based, focusing on intrinsic properties of the data such as distance, dependency, and correlation. These methods are fast but select far too many genes to use for the classification task. In this work, we present a new hybrid filter-wrapper gene subset selection algorithm that is an improved modification of our prior algorithm. Our proposed method employs interaction information to rank candidate genes to add into a gene subset. It then conditionally adds one gene at a time into the current subset and verifies whether the resultant subset improves the classification performance significantly. Only significant genes are selected, and the candidate gene list is updated every time a gene is added to the subset. Thus, our gene selection algorithm is very dynamic. Experimental results on ten public cancer microarray data sets show that our method consistently outperforms prior gene selection algorithms in terms of classification accuracy, while requiring a small number of selected genes. |
format | Online Article Text |
id | pubmed-6377117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63771172019-03-01 A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification Nakariyakul, Songyot PLoS One Research Article We address gene selection and machine learning methods for cancer classification using microarray gene expression data. Due to the high dimensionality of microarray data, traditional gene selection algorithms are filter-based, focusing on intrinsic properties of the data such as distance, dependency, and correlation. These methods are fast but select far too many genes to use for the classification task. In this work, we present a new hybrid filter-wrapper gene subset selection algorithm that is an improved modification of our prior algorithm. Our proposed method employs interaction information to rank candidate genes to add into a gene subset. It then conditionally adds one gene at a time into the current subset and verifies whether the resultant subset improves the classification performance significantly. Only significant genes are selected, and the candidate gene list is updated every time a gene is added to the subset. Thus, our gene selection algorithm is very dynamic. Experimental results on ten public cancer microarray data sets show that our method consistently outperforms prior gene selection algorithms in terms of classification accuracy, while requiring a small number of selected genes. Public Library of Science 2019-02-15 /pmc/articles/PMC6377117/ /pubmed/30768654 http://dx.doi.org/10.1371/journal.pone.0212333 Text en © 2019 Songyot Nakariyakul http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nakariyakul, Songyot A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title | A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title_full | A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title_fullStr | A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title_full_unstemmed | A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title_short | A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
title_sort | hybrid gene selection algorithm based on interaction information for microarray-based cancer classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377117/ https://www.ncbi.nlm.nih.gov/pubmed/30768654 http://dx.doi.org/10.1371/journal.pone.0212333 |
work_keys_str_mv | AT nakariyakulsongyot ahybridgeneselectionalgorithmbasedoninteractioninformationformicroarraybasedcancerclassification AT nakariyakulsongyot hybridgeneselectionalgorithmbasedoninteractioninformationformicroarraybasedcancerclassification |