Cargando…
A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification
We address gene selection and machine learning methods for cancer classification using microarray gene expression data. Due to the high dimensionality of microarray data, traditional gene selection algorithms are filter-based, focusing on intrinsic properties of the data such as distance, dependency...
Autor principal: | Nakariyakul, Songyot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377117/ https://www.ncbi.nlm.nih.gov/pubmed/30768654 http://dx.doi.org/10.1371/journal.pone.0212333 |
Ejemplares similares
-
mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling
por: Alshamlan, Hala, et al.
Publicado: (2015) -
A novel gene selection algorithm for cancer classification using microarray datasets
por: Alanni, Russul, et al.
Publicado: (2019) -
A Robust Gene Selection Method for Microarray-based Cancer Classification
por: Wang, Xiaosheng, et al.
Publicado: (2010) -
Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data
por: Wang, Zixuan, et al.
Publicado: (2023) -
Hybrid feature selection based on SLI and genetic algorithm for microarray datasets
por: Abasabadi, Sedighe, et al.
Publicado: (2022)