Cargando…

Support vector machine with quantile hyper-spheres for pattern classification

This paper formulates a support vector machine with quantile hyper-spheres (QHSVM) for pattern classification. The idea of QHSVM is to build two quantile hyper-spheres with the same center for positive or negative training samples. Every quantile hyper-sphere is constructed by using pinball loss ins...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Maoxiang, Liu, Xiaoping, Gong, Rongfen, Zhao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377146/
https://www.ncbi.nlm.nih.gov/pubmed/30768635
http://dx.doi.org/10.1371/journal.pone.0212361
Descripción
Sumario:This paper formulates a support vector machine with quantile hyper-spheres (QHSVM) for pattern classification. The idea of QHSVM is to build two quantile hyper-spheres with the same center for positive or negative training samples. Every quantile hyper-sphere is constructed by using pinball loss instead of hinge loss, which makes the new classification model be insensitive to noise, especially the feature noise around the decision boundary. Moreover, the robustness and generalization of QHSVM are strengthened through maximizing the margin between two quantile hyper-spheres, maximizing the inner-class clustering of samples and optimizing the independent quadratic programming for a target class. Besides that, this paper proposes a novel local center-based density estimation method. Based on it, ρ-QHSVM with surrounding and clustering samples is given. Under the premise of high accuracy, the execution speed of ρ-QHSVM can be adjusted. The experimental results in artificial, benchmark and strip steel surface defects datasets show that the QHSVM model has distinct advantages in accuracy and the ρ-QHSVM model is fit for large-scale datasets.