Cargando…
Metal concentrations in pregnant women and neonates from informal electronic waste recycling
Electronic waste (e-waste) is the fastest growing solid waste stream worldwide and mostly ends up in developing countries where residents use primitive methods for recycling. The most infamous e-waste recycling town, Guiyu in Southeast China, has been recycling since the mid-1990s. E-waste contains...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377357/ https://www.ncbi.nlm.nih.gov/pubmed/30111780 http://dx.doi.org/10.1038/s41370-018-0054-9 |
Sumario: | Electronic waste (e-waste) is the fastest growing solid waste stream worldwide and mostly ends up in developing countries where residents use primitive methods for recycling. The most infamous e-waste recycling town, Guiyu in Southeast China, has been recycling since the mid-1990s. E-waste contains several harmful chemicals, including lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn). In 2011–12, the e-waste Recycling Exposures and Community Health (e-REACH) Study enrolled 634 pregnant women living in Guiyu and Haojiang, a control site, both in Shantou, China. The women completed a questionnaire and gave maternal blood, cord blood, and maternal urine, which were analyzed for Pb, Cd, Cr, and Mn. Maternal blood Pb, Cd, and Cr concentrations were significantly higher in Guiyu compared to Haojiang. In Guiyu, the geometric mean of Pb concentration in maternal blood was 6.66 μg/dL (range: 1.87 – 27.09 μg/dL) and was 1.74-fold greater than in Haojiang (95% CI: 1.60, 1.89). In cord blood, Pb concentration was 1.53-fold higher in Guiyu (95% CI: 1.38, 1.68). In maternal urine, Cd (ratio: 2.15, 95% CI: 1.72, 2.69) and Mn (ratio: 2.60, 95% CI: 2.04, 3.31) concentrations were significantly higher in Guiyu in comparison to Haojiang. In conclusion, pregnant women in Guiyu were at risk for increased exposure to heavy metals. |
---|