Cargando…
A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer
The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35–40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377605/ https://www.ncbi.nlm.nih.gov/pubmed/30770825 http://dx.doi.org/10.1038/s41467-019-08718-9 |
_version_ | 1783395769707921408 |
---|---|
author | Lu, Haonan Arshad, Mubarik Thornton, Andrew Avesani, Giacomo Cunnea, Paula Curry, Ed Kanavati, Fahdi Liang, Jack Nixon, Katherine Williams, Sophie T. Hassan, Mona Ali Bowtell, David D. L. Gabra, Hani Fotopoulou, Christina Rockall, Andrea Aboagye, Eric O. |
author_facet | Lu, Haonan Arshad, Mubarik Thornton, Andrew Avesani, Giacomo Cunnea, Paula Curry, Ed Kanavati, Fahdi Liang, Jack Nixon, Katherine Williams, Sophie T. Hassan, Mona Ali Bowtell, David D. L. Gabra, Hani Fotopoulou, Christina Rockall, Andrea Aboagye, Eric O. |
author_sort | Lu, Haonan |
collection | PubMed |
description | The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35–40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name “Radiomic Prognostic Vector” (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types. |
format | Online Article Text |
id | pubmed-6377605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63776052019-02-19 A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer Lu, Haonan Arshad, Mubarik Thornton, Andrew Avesani, Giacomo Cunnea, Paula Curry, Ed Kanavati, Fahdi Liang, Jack Nixon, Katherine Williams, Sophie T. Hassan, Mona Ali Bowtell, David D. L. Gabra, Hani Fotopoulou, Christina Rockall, Andrea Aboagye, Eric O. Nat Commun Article The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35–40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name “Radiomic Prognostic Vector” (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types. Nature Publishing Group UK 2019-02-15 /pmc/articles/PMC6377605/ /pubmed/30770825 http://dx.doi.org/10.1038/s41467-019-08718-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lu, Haonan Arshad, Mubarik Thornton, Andrew Avesani, Giacomo Cunnea, Paula Curry, Ed Kanavati, Fahdi Liang, Jack Nixon, Katherine Williams, Sophie T. Hassan, Mona Ali Bowtell, David D. L. Gabra, Hani Fotopoulou, Christina Rockall, Andrea Aboagye, Eric O. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title | A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title_full | A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title_fullStr | A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title_full_unstemmed | A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title_short | A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
title_sort | mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377605/ https://www.ncbi.nlm.nih.gov/pubmed/30770825 http://dx.doi.org/10.1038/s41467-019-08718-9 |
work_keys_str_mv | AT luhaonan amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT arshadmubarik amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT thorntonandrew amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT avesanigiacomo amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT cunneapaula amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT curryed amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT kanavatifahdi amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT liangjack amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT nixonkatherine amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT williamssophiet amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT hassanmonaali amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT bowtelldaviddl amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT gabrahani amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT fotopoulouchristina amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT rockallandrea amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT aboagyeerico amathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT luhaonan mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT arshadmubarik mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT thorntonandrew mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT avesanigiacomo mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT cunneapaula mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT curryed mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT kanavatifahdi mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT liangjack mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT nixonkatherine mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT williamssophiet mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT hassanmonaali mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT bowtelldaviddl mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT gabrahani mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT fotopoulouchristina mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT rockallandrea mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer AT aboagyeerico mathematicaldescriptoroftumormesoscopicstructurefromcomputedtomographyimagesannotatesprognosticandmolecularphenotypesofepithelialovariancancer |