Cargando…
A multi-substrate screening approach for the identification of a broadly applicable Diels–Alder catalyst
When developing a synthetic methodology, chemists generally optimize a single substrate and then explore the substrate scope of their method. This approach has led to innumerable and widely-used chemical reactions. However, it frequently provides methods that only work on model substrate-like compou...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377681/ https://www.ncbi.nlm.nih.gov/pubmed/30770804 http://dx.doi.org/10.1038/s41467-019-08374-z |
Sumario: | When developing a synthetic methodology, chemists generally optimize a single substrate and then explore the substrate scope of their method. This approach has led to innumerable and widely-used chemical reactions. However, it frequently provides methods that only work on model substrate-like compounds. Perhaps worse, reaction conditions that would enable the conversion of other substrates may be missed. We now show that a different approach, originally proposed by Kagan, in which a collection of structurally distinct substrates are evaluated in a single reaction vessel, can not only provide information on the substrate scope at a much earlier stage in methodology development, but even lead to a broadly applicable synthetic methodology. Using this multi-substrate screening approach, we have identified an efficient and stereoselective imidodiphosphorimidate organocatalyst for scalable Diels–Alder reactions of cyclopentadiene with different classes of α,β-unsaturated aldehydes. |
---|