Cargando…
Down-conversion en-face optical coherence tomography
We present an optical coherence tomography (OCT) method that can deliver an en-face OCT image from a sample in real-time, irrespective of the tuning speed of the swept source. The method, based on the master slave interferometry technique, implements a coherence gate principle by requiring that the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377877/ https://www.ncbi.nlm.nih.gov/pubmed/30800514 http://dx.doi.org/10.1364/BOE.10.000772 |
_version_ | 1783395822476460032 |
---|---|
author | Podoleanu, Adrian Cernat, Ramona Bradu, Adrian |
author_facet | Podoleanu, Adrian Cernat, Ramona Bradu, Adrian |
author_sort | Podoleanu, Adrian |
collection | PubMed |
description | We present an optical coherence tomography (OCT) method that can deliver an en-face OCT image from a sample in real-time, irrespective of the tuning speed of the swept source. The method, based on the master slave interferometry technique, implements a coherence gate principle by requiring that the optical path difference (OPD) between the arms of an imaging interferometer is the same with the OPD in an interrogating interferometer. In this way, a real-time en-face OCT image can originate from a depth in the sample placed in the imaging interferometer, selected by actuating on the OPD in the interrogating interferometer, while laterally scanning the incident beam over the sample. The generation of the en-face image resembles time domain OCT, with the difference that here the signal is processed based on spectral domain OCT. The optoelectronic processor operates down-conversion of the chirped radio frequency signal delivered by the photo-detector. The down-conversion factor is equal to the ratio of the maximum frequency of the photo-detected signal due to an OPD value matching the coherence length of the swept source, to the sweeping rate. This factor can exceed 10(6) for long coherence swept sources. |
format | Online Article Text |
id | pubmed-6377877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-63778772019-02-22 Down-conversion en-face optical coherence tomography Podoleanu, Adrian Cernat, Ramona Bradu, Adrian Biomed Opt Express Article We present an optical coherence tomography (OCT) method that can deliver an en-face OCT image from a sample in real-time, irrespective of the tuning speed of the swept source. The method, based on the master slave interferometry technique, implements a coherence gate principle by requiring that the optical path difference (OPD) between the arms of an imaging interferometer is the same with the OPD in an interrogating interferometer. In this way, a real-time en-face OCT image can originate from a depth in the sample placed in the imaging interferometer, selected by actuating on the OPD in the interrogating interferometer, while laterally scanning the incident beam over the sample. The generation of the en-face image resembles time domain OCT, with the difference that here the signal is processed based on spectral domain OCT. The optoelectronic processor operates down-conversion of the chirped radio frequency signal delivered by the photo-detector. The down-conversion factor is equal to the ratio of the maximum frequency of the photo-detected signal due to an OPD value matching the coherence length of the swept source, to the sweeping rate. This factor can exceed 10(6) for long coherence swept sources. Optical Society of America 2019-01-23 /pmc/articles/PMC6377877/ /pubmed/30800514 http://dx.doi.org/10.1364/BOE.10.000772 Text en Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/) . Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. |
spellingShingle | Article Podoleanu, Adrian Cernat, Ramona Bradu, Adrian Down-conversion en-face optical coherence tomography |
title | Down-conversion en-face optical coherence tomography |
title_full | Down-conversion en-face optical coherence tomography |
title_fullStr | Down-conversion en-face optical coherence tomography |
title_full_unstemmed | Down-conversion en-face optical coherence tomography |
title_short | Down-conversion en-face optical coherence tomography |
title_sort | down-conversion en-face optical coherence tomography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377877/ https://www.ncbi.nlm.nih.gov/pubmed/30800514 http://dx.doi.org/10.1364/BOE.10.000772 |
work_keys_str_mv | AT podoleanuadrian downconversionenfaceopticalcoherencetomography AT cernatramona downconversionenfaceopticalcoherencetomography AT braduadrian downconversionenfaceopticalcoherencetomography |