Cargando…

Video Foreground Detection Algorithm Based on Fast Principal Component Pursuit and Motion Saliency

Aiming at the shortcoming of being unsuitable for dynamic background and high computational complexity of the existing RPCA- (robust principal component analysis-) based block-sparse moving object detection method, this paper proposes a two-stage foreground detection framework based on motion salien...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Rui, Tong, Ying, Yang, Jie, Wu, Minghu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378080/
https://www.ncbi.nlm.nih.gov/pubmed/30863435
http://dx.doi.org/10.1155/2019/4769185
Descripción
Sumario:Aiming at the shortcoming of being unsuitable for dynamic background and high computational complexity of the existing RPCA- (robust principal component analysis-) based block-sparse moving object detection method, this paper proposes a two-stage foreground detection framework based on motion saliency for video sequence. At the first stage, the observed image sequence is regarded as the sum of a low-rank background matrix and a sparse outlier matrix, and then the decomposition is solved by the RPCA method via fast PCP (principal component pursuit). At the second stage, the sparse foreground blocks are obtained according to the spectral residuals and the spatial correlation of the foreground region. Finally, the block-sparse RPCA algorithm through fast PCP is used to estimate foreground areas dynamically and to reconstruct the foreground objects. Extensive experiments demonstrate that our method can exclude the interference of background motion and change, simultaneously improving the detection rate of small targets.