Cargando…

Targeting the lysosome by an aminomethylated Riccardin D triggers DNA damage through cathepsin B‐mediated degradation of BRCA1

RD‐N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)‐dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD‐N treatment drives...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanyan, Niu, Huanmin, Hu, Zhongyi, Zhu, Mengyuan, Wang, Lining, Han, Lili, Qian, Lilin, Tian, Keli, Yuan, Huiqing, Lou, Hongxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378192/
https://www.ncbi.nlm.nih.gov/pubmed/30565390
http://dx.doi.org/10.1111/jcmm.14077
Descripción
Sumario:RD‐N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)‐dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD‐N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB‐targeting siRNA or CTSB with enzyme‐negative domain attenuated activation of BRCA1 and DNA damage induced by RD‐N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD‐N‐induced cell death. Furthermore, RD‐N‐induced cell death was exacerbated in BRCA1‐deficient cancer cells. We also demonstrated that CTSB/BRCA1‐dependent DNA damage was critical for RD‐N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD‐N‐mediated cell death. In addition, RD‐N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1‐deficient cancer cells. This study reveals a novel molecular mechanism that RD‐N promotes CTSB‐dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.