Cargando…

Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport

An implicit Euler finite‐volume scheme for a degenerate cross‐diffusion system describing the ion transport through biological membranes is proposed. The strongly coupled equations for the ion concentrations include drift terms involving the electric potential, which is coupled to the concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Cancès, Clément, Chainais‐Hillairet, Claire, Gerstenmayer, Anita, Jüngel, Ansgar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378625/
https://www.ncbi.nlm.nih.gov/pubmed/30828127
http://dx.doi.org/10.1002/num.22313
_version_ 1783395957324382208
author Cancès, Clément
Chainais‐Hillairet, Claire
Gerstenmayer, Anita
Jüngel, Ansgar
author_facet Cancès, Clément
Chainais‐Hillairet, Claire
Gerstenmayer, Anita
Jüngel, Ansgar
author_sort Cancès, Clément
collection PubMed
description An implicit Euler finite‐volume scheme for a degenerate cross‐diffusion system describing the ion transport through biological membranes is proposed. The strongly coupled equations for the ion concentrations include drift terms involving the electric potential, which is coupled to the concentrations through the Poisson equation. The cross‐diffusion system possesses a formal gradient‐flow structure revealing nonstandard degeneracies, which lead to considerable mathematical difficulties. The finite‐volume scheme is based on two‐point flux approximations with “double” upwind mobilities. The existence of solutions to the fully discrete scheme is proved. When the particles are not distinguishable and the dynamics is driven by cross diffusion only, it is shown that the scheme preserves the structure of the equations like nonnegativity, upper bounds, and entropy dissipation. The degeneracy is overcome by proving a new discrete Aubin–Lions lemma of “degenerate” type. Numerical simulations of a calcium‐selective ion channel in two space dimensions show that the scheme is efficient even in the general case of ion transport.
format Online
Article
Text
id pubmed-6378625
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-63786252019-02-28 Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport Cancès, Clément Chainais‐Hillairet, Claire Gerstenmayer, Anita Jüngel, Ansgar Numer Methods Partial Differ Equ Research Articles An implicit Euler finite‐volume scheme for a degenerate cross‐diffusion system describing the ion transport through biological membranes is proposed. The strongly coupled equations for the ion concentrations include drift terms involving the electric potential, which is coupled to the concentrations through the Poisson equation. The cross‐diffusion system possesses a formal gradient‐flow structure revealing nonstandard degeneracies, which lead to considerable mathematical difficulties. The finite‐volume scheme is based on two‐point flux approximations with “double” upwind mobilities. The existence of solutions to the fully discrete scheme is proved. When the particles are not distinguishable and the dynamics is driven by cross diffusion only, it is shown that the scheme preserves the structure of the equations like nonnegativity, upper bounds, and entropy dissipation. The degeneracy is overcome by proving a new discrete Aubin–Lions lemma of “degenerate” type. Numerical simulations of a calcium‐selective ion channel in two space dimensions show that the scheme is efficient even in the general case of ion transport. John Wiley & Sons, Inc. 2018-08-20 2019-03 /pmc/articles/PMC6378625/ /pubmed/30828127 http://dx.doi.org/10.1002/num.22313 Text en © 2018 The Authors. Numerical Methods for Partial Differential Equations published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Cancès, Clément
Chainais‐Hillairet, Claire
Gerstenmayer, Anita
Jüngel, Ansgar
Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title_full Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title_fullStr Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title_full_unstemmed Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title_short Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
title_sort finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378625/
https://www.ncbi.nlm.nih.gov/pubmed/30828127
http://dx.doi.org/10.1002/num.22313
work_keys_str_mv AT cancesclement finitevolumeschemeforadegeneratecrossdiffusionmodelmotivatedfromiontransport
AT chainaishillairetclaire finitevolumeschemeforadegeneratecrossdiffusionmodelmotivatedfromiontransport
AT gerstenmayeranita finitevolumeschemeforadegeneratecrossdiffusionmodelmotivatedfromiontransport
AT jungelansgar finitevolumeschemeforadegeneratecrossdiffusionmodelmotivatedfromiontransport