Cargando…

Tumour Necrosis Factor-α Inhibition Improves Stroke Outcome in a Mouse Model of Rheumatoid Arthritis

Rheumatoid Arthritis (RA) is a chronic inflammatory disorder where incidence and severity of myocardial infarction are increased. Data on the incidence and outcome of stroke are conflicting. Thus, we investigated outcome after Ischemia/Reperfusion (I/R) brain injury in a mouse model of RA and assess...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonetti, N. R., Diaz-Cañestro, C., Liberale, L., Crucet, M., Akhmedov, A., Merlini, M., Reiner, M. F., Gobbato, S., Stivala, S., Kollias, G., Ruschitzka, F., Lüscher, T. F., Beer, J. H., Camici, G. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379411/
https://www.ncbi.nlm.nih.gov/pubmed/30778120
http://dx.doi.org/10.1038/s41598-019-38670-z
Descripción
Sumario:Rheumatoid Arthritis (RA) is a chronic inflammatory disorder where incidence and severity of myocardial infarction are increased. Data on the incidence and outcome of stroke are conflicting. Thus, we investigated outcome after Ischemia/Reperfusion (I/R) brain injury in a mouse model of RA and assessed for the role of the tumour necrosis factor-α (TNF-α) inhibitor Infliximab herein. We used a TNF-α reliant mouse model of RA. RA and wildtype (WT) animals were treated with vehicle (RA/WT) or Infliximab (RA Infliximab) for 4 weeks, before undergoing I/R brain injury. RA-animals displayed larger strokes and poorer neurological performance. Immunohistochemistry on brain sections revealed increased numbers of resident and peripheral innate immune cells (microglia and macrophages); increased Blood-Brain-Barrier (BBB)-disruption; decreased levels of the tight junction proteins (TJPs) claudin-5 and occludin; increased expression of matrix-metalloproteinases (MMP)-3 and -9 and enhanced lipid peroxidation. Treatment with Infliximab corrected these alterations. We show that RA associates to worse stroke-outcome via exacerbated BBB degradation by decrease of the TJPs claudin-5 and occludin. We identified MMPs-3 and -9 and increased oxidative stress as potential mediators thereof. Increased numbers of resident and peripheral innate immune cells (microglia and macrophages) may in turn contribute to all these effects. Infliximab-treatment restored the phenotype of RA-mice to baseline. Our data provide evidence clearly linking RA to adverse stroke-outcome in mice and indicate an approved TNF-α inhibitor as a potential strategy to reduce stroke-burden in this setting.