Cargando…
k-Skip-n-Gram-RF: A Random Forest Based Method for Alzheimer's Disease Protein Identification
In this paper, a computational method based on machine learning technique for identifying Alzheimer's disease genes is proposed. Compared with most existing machine learning based methods, existing methods predict Alzheimer's disease genes by using structural magnetic resonance imaging (MR...
Autores principales: | Xu, Lei, Liang, Guangmin, Liao, Changrui, Chen, Gin-Den, Chang, Chi-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379451/ https://www.ncbi.nlm.nih.gov/pubmed/30809242 http://dx.doi.org/10.3389/fgene.2019.00033 |
Ejemplares similares
-
An Efficient Classifier for Alzheimer’s Disease Genes Identification
por: Xu, Lei, et al.
Publicado: (2018) -
RF_phage virion: Classification of phage virion proteins with a random forest model
por: Zhang, Yanqin, et al.
Publicado: (2023) -
Corrigendum: RF_phage virion: classification of phage virion proteins with a random forest model
por: Zhang, Yanqin, et al.
Publicado: (2023) -
Combinatorial Pattern of Histone Modifications in Exon Skipping Event
por: Chen, Wei, et al.
Publicado: (2019) -
Improved Skip-Gram Based on Graph Structure Information
por: Wang, Xiaojie, et al.
Publicado: (2023)