Cargando…
Computational Identification of Inhibitors Using QSAR Approach Against Nipah Virus
Nipah virus (NiV) caused several outbreaks in Asian countries including the latest one from Kerala state of India. There is no drug available against NiV till now, despite its urgent requirement. In the current study, we have provided a computational one-stop solution for NiV inhibitors. We have dev...
Autores principales: | Rajput, Akanksha, Kumar, Archit, Kumar, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379726/ https://www.ncbi.nlm.nih.gov/pubmed/30809147 http://dx.doi.org/10.3389/fphar.2019.00071 |
Ejemplares similares
-
NipahVR: a resource of multi-targeted putative therapeutics and epitopes for the Nipah virus
por: Gupta, Amit Kumar, et al.
Publicado: (2020) -
Anti-flavi: A Web Platform to Predict Inhibitors of Flaviviruses Using QSAR and Peptidomimetic Approaches
por: Rajput, Akanksha, et al.
Publicado: (2018) -
Computational Identification of Potential Multitarget Inhibitors of Nipah Virus by Molecular Docking and Molecular Dynamics
por: Randhawa, Vinay, et al.
Publicado: (2022) -
Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches
por: Kamboj, Sakshi, et al.
Publicado: (2022) -
Biofilm-i: A Platform for Predicting Biofilm Inhibitors Using Quantitative Structure—Relationship (QSAR) Based Regression Models to Curb Antibiotic Resistance
por: Rajput, Akanksha, et al.
Publicado: (2022)