Cargando…

Dynamic Mechanical Analysis of Carbon Nanotube-Reinforced Nanocomposites

BACKGROUND: To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)–reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explo...

Descripción completa

Detalles Bibliográficos
Autores principales: Her, Shiuh-Chuan, Lin, Kuan-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379776/
https://www.ncbi.nlm.nih.gov/pubmed/28525676
http://dx.doi.org/10.5301/jabfm.5000351
Descripción
Sumario:BACKGROUND: To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)–reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. METHODS: Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. RESULTS: Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. CONCLUSIONS: Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.