Cargando…

Pixelating crop production: Consequences of methodological choices

Worldwide, crop production is intrinsically intertwined with biological, environmental and economic systems, all of which involve complex, inter-related and spatially-sensitive phenomena. Thus knowing the location of agriculture matters much for a host of reasons. There are several widely cited atte...

Descripción completa

Detalles Bibliográficos
Autores principales: Joglekar, Alison K. B., Wood-Sichra, Ulrike, Pardey, Philip G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380596/
https://www.ncbi.nlm.nih.gov/pubmed/30779813
http://dx.doi.org/10.1371/journal.pone.0212281
_version_ 1783396327331201024
author Joglekar, Alison K. B.
Wood-Sichra, Ulrike
Pardey, Philip G.
author_facet Joglekar, Alison K. B.
Wood-Sichra, Ulrike
Pardey, Philip G.
author_sort Joglekar, Alison K. B.
collection PubMed
description Worldwide, crop production is intrinsically intertwined with biological, environmental and economic systems, all of which involve complex, inter-related and spatially-sensitive phenomena. Thus knowing the location of agriculture matters much for a host of reasons. There are several widely cited attempts to model the spatial pattern of crop production worldwide, not least by pixilating crop production statistics originally reported on an areal (administrative boundary) basis. However, these modeled measures have had little scrutiny regarding the robustness of their results to alternative data and modeling choices. Our research casts a critical eye over the nature and empirical plausibility of these types of datasets. To do so, we determine the sensitivity of the 2005 variant of the spatial production allocation model data series (SPAM2005) to eight methodological-cum-data choices in nine agriculturally-large and developmentally-variable countries: Brazil, China, Ethiopia, France, India, Indonesia, Nigeria, Turkey and the United States. We compare the original published estimates with those obtained from a series of robustness tests using various aggregations of the pixelized spatial production indicators (specifically, commodity-specific harvested area, production quantity and yield). Spatial similarity is empirically assessed using a pixel-level spatial similarity index (SSI). We find that the SPAM2005 estimates are most dependent on the degree of disaggregation of the underlying national and subnational production statistics. The results are also somewhat sensitive to the use of a simple spatial allocation method based solely on cropland proportions versus a cross-entropy allocation method, as well as the set of crops or crop aggregates being modeled, and are least sensitive to the inclusion of crude economic elements. Finally, we assess the spatial concordance between the SPAM2005 estimates of the area harvested of major crops in the United States and pixelated measures derived from remote-sensed data.
format Online
Article
Text
id pubmed-6380596
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63805962019-03-01 Pixelating crop production: Consequences of methodological choices Joglekar, Alison K. B. Wood-Sichra, Ulrike Pardey, Philip G. PLoS One Research Article Worldwide, crop production is intrinsically intertwined with biological, environmental and economic systems, all of which involve complex, inter-related and spatially-sensitive phenomena. Thus knowing the location of agriculture matters much for a host of reasons. There are several widely cited attempts to model the spatial pattern of crop production worldwide, not least by pixilating crop production statistics originally reported on an areal (administrative boundary) basis. However, these modeled measures have had little scrutiny regarding the robustness of their results to alternative data and modeling choices. Our research casts a critical eye over the nature and empirical plausibility of these types of datasets. To do so, we determine the sensitivity of the 2005 variant of the spatial production allocation model data series (SPAM2005) to eight methodological-cum-data choices in nine agriculturally-large and developmentally-variable countries: Brazil, China, Ethiopia, France, India, Indonesia, Nigeria, Turkey and the United States. We compare the original published estimates with those obtained from a series of robustness tests using various aggregations of the pixelized spatial production indicators (specifically, commodity-specific harvested area, production quantity and yield). Spatial similarity is empirically assessed using a pixel-level spatial similarity index (SSI). We find that the SPAM2005 estimates are most dependent on the degree of disaggregation of the underlying national and subnational production statistics. The results are also somewhat sensitive to the use of a simple spatial allocation method based solely on cropland proportions versus a cross-entropy allocation method, as well as the set of crops or crop aggregates being modeled, and are least sensitive to the inclusion of crude economic elements. Finally, we assess the spatial concordance between the SPAM2005 estimates of the area harvested of major crops in the United States and pixelated measures derived from remote-sensed data. Public Library of Science 2019-02-19 /pmc/articles/PMC6380596/ /pubmed/30779813 http://dx.doi.org/10.1371/journal.pone.0212281 Text en © 2019 Joglekar et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Joglekar, Alison K. B.
Wood-Sichra, Ulrike
Pardey, Philip G.
Pixelating crop production: Consequences of methodological choices
title Pixelating crop production: Consequences of methodological choices
title_full Pixelating crop production: Consequences of methodological choices
title_fullStr Pixelating crop production: Consequences of methodological choices
title_full_unstemmed Pixelating crop production: Consequences of methodological choices
title_short Pixelating crop production: Consequences of methodological choices
title_sort pixelating crop production: consequences of methodological choices
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380596/
https://www.ncbi.nlm.nih.gov/pubmed/30779813
http://dx.doi.org/10.1371/journal.pone.0212281
work_keys_str_mv AT joglekaralisonkb pixelatingcropproductionconsequencesofmethodologicalchoices
AT woodsichraulrike pixelatingcropproductionconsequencesofmethodologicalchoices
AT pardeyphilipg pixelatingcropproductionconsequencesofmethodologicalchoices