Cargando…
Machine learning and feature selection for drug response prediction in precision oncology applications
In-depth modeling of the complex interplay among multiple omics data measured from cancer cell lines or patient tumors is providing new opportunities toward identification of tailored therapies for individual cancer patients. Supervised machine learning algorithms are increasingly being applied to t...
Autores principales: | Ali, Mehreen, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381361/ https://www.ncbi.nlm.nih.gov/pubmed/30097794 http://dx.doi.org/10.1007/s12551-018-0446-z |
Ejemplares similares
-
Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach
por: Ali, Mehreen, et al.
Publicado: (2018) -
Tissue-specific identification of multi-omics features for pan-cancer drug response prediction
por: Zhao, Zhi, et al.
Publicado: (2022) -
Genetic variants and their interactions in disease risk prediction – machine learning and network perspectives
por: Okser, Sebastian, et al.
Publicado: (2013) -
Regularized Machine Learning in the Genetic Prediction of Complex Traits
por: Okser, Sebastian, et al.
Publicado: (2014) -
Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers
por: Tabari, Azadeh, et al.
Publicado: (2022)