Cargando…
Detecting Potential Adverse Drug Reactions Using a Deep Neural Network Model
BACKGROUND: Adverse drug reactions (ADRs) are common and are the underlying cause of over a million serious injuries and deaths each year. The most familiar method to detect ADRs is relying on spontaneous reports. Unfortunately, the low reporting rate of spontaneous reports is a serious limitation o...
Autores principales: | Wang, Chi-Shiang, Lin, Pei-Ju, Cheng, Ching-Lan, Tai, Shu-Hua, Kao Yang, Yea-Huei, Chiang, Jung-Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381404/ https://www.ncbi.nlm.nih.gov/pubmed/30724742 http://dx.doi.org/10.2196/11016 |
Ejemplares similares
-
Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan
por: Cheng, Ching-Lan, et al.
Publicado: (2011) -
Detecting Potential Adverse Reactions of Sulpiride in Schizophrenic Patients by Prescription Sequence Symmetry Analysis
por: Lai, Edward Chia-Cheng, et al.
Publicado: (2014) -
Real‐world evidence of population differences in allopurinol‐related severe cutaneous adverse reactions in East Asians: A population‐based cohort study
por: Sato, Tsugumichi, et al.
Publicado: (2021) -
Sex difference in heart failure risk associated with febuxostat and allopurinol in gout patients
por: Cheng, Ching-Lan, et al.
Publicado: (2022) -
Prescription sequence symmetry analysis: assessing risk, temporality, and consistency for adverse drug reactions across datasets in five countries
por: Pratt, Nicole, et al.
Publicado: (2015)