Cargando…

Prediction of lncRNA-disease associations by integrating diverse heterogeneous information sources with RWR algorithm and positive pointwise mutual information

BACKGROUND: Long non-coding RNAs play an important role in human complex diseases. Identification of lncRNA-disease associations will gain insight into disease-related lncRNAs and benefit disease diagnoses and treatment. However, using experiments to explore the lncRNA-disease associations is expens...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Xiao-Nan, Zhang, Shao-Wu, Zhang, Song-Yao, Zhu, Kunju, Lu, Songjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381749/
https://www.ncbi.nlm.nih.gov/pubmed/30782113
http://dx.doi.org/10.1186/s12859-019-2675-y
Descripción
Sumario:BACKGROUND: Long non-coding RNAs play an important role in human complex diseases. Identification of lncRNA-disease associations will gain insight into disease-related lncRNAs and benefit disease diagnoses and treatment. However, using experiments to explore the lncRNA-disease associations is expensive and time consuming. RESULTS: In this study, we developed a novel method to identify potential lncRNA-disease associations by Integrating Diverse Heterogeneous Information sources with positive pointwise Mutual Information and Random Walk with restart algorithm (namely IDHI-MIRW). IDHI-MIRW first constructs multiple lncRNA similarity networks and disease similarity networks from diverse lncRNA-related and disease-related datasets, then implements the random walk with restart algorithm on these similarity networks for extracting the topological similarities which are fused with positive pointwise mutual information to build a large-scale lncRNA-disease heterogeneous network. Finally, IDHI-MIRW implemented random walk with restart algorithm on the lncRNA-disease heterogeneous network to infer potential lncRNA-disease associations. CONCLUSIONS: Compared with other state-of-the-art methods, IDHI-MIRW achieves the best prediction performance. In case studies of breast cancer, stomach cancer, and colorectal cancer, 36/45 (80%) novel lncRNA-disease associations predicted by IDHI-MIRW are supported by recent literatures. Furthermore, we found lncRNA LINC01816 is associated with the survival of colorectal cancer patients. IDHI-MIRW is freely available at https://github.com/NWPU-903PR/IDHI-MIRW. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2675-y) contains supplementary material, which is available to authorized users.