Cargando…
Prediction of lncRNA-disease associations by integrating diverse heterogeneous information sources with RWR algorithm and positive pointwise mutual information
BACKGROUND: Long non-coding RNAs play an important role in human complex diseases. Identification of lncRNA-disease associations will gain insight into disease-related lncRNAs and benefit disease diagnoses and treatment. However, using experiments to explore the lncRNA-disease associations is expens...
Autores principales: | Fan, Xiao-Nan, Zhang, Shao-Wu, Zhang, Song-Yao, Zhu, Kunju, Lu, Songjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381749/ https://www.ncbi.nlm.nih.gov/pubmed/30782113 http://dx.doi.org/10.1186/s12859-019-2675-y |
Ejemplares similares
-
Profiling and analysis of chemical compounds using pointwise mutual information
por: Čmelo, I., et al.
Publicado: (2021) -
Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers
por: Spagnolo, Daniel M., et al.
Publicado: (2016) -
PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information
por: Meckbach, Cornelia, et al.
Publicado: (2015) -
Using Pointwise Mutual Information for Breast Cancer Health Disparities Research With SEER-Medicare Claims
por: Egleston, Brian L., et al.
Publicado: (2023) -
PMINR: Pointwise Mutual Information-Based Network Regression – With Application to Studies of Lung Cancer and Alzheimer’s Disease
por: Lin, Weiqiang, et al.
Publicado: (2020)