Cargando…

Rapid prediction of yellow tea free amino acids with hyperspectral images

Free amino acids are an important indicator of the freshness of yellow tea. This study investigated a novel procedure for predicting the free amino acid (FAA) concentration of yellow tea. It was developed based on the combined spectral and textural features from hyperspectral images. For the purpose...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Baohua, Gao, Yuan, Li, Hongmin, Ye, Shengbo, He, Hongxia, Xie, Shenru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382264/
https://www.ncbi.nlm.nih.gov/pubmed/30785888
http://dx.doi.org/10.1371/journal.pone.0210084
Descripción
Sumario:Free amino acids are an important indicator of the freshness of yellow tea. This study investigated a novel procedure for predicting the free amino acid (FAA) concentration of yellow tea. It was developed based on the combined spectral and textural features from hyperspectral images. For the purposes of exploration and comparison, hyperspectral images of yellow tea (150 samples) were captured and analyzed. The raw spectra were preprocessed with Savitzky-Golay (SG) smoothing. To reduce the dimension of spectral data, five feature wavelengths were extracted using the successive projections algorithm (SPA). Five textural features (angular second moment, entropy, contrast, correlation, and homogeneity) were extracted as textural variables from the characteristic grayscale images of the five characteristic wavelengths using the gray-level co-occurrence matrix (GLCM). The FAA content prediction model with different variables was established by a genetic algorithm-support vector regression (GA-SVR) algorithm. The results showed that better prediction results were obtained by combining the feature wavelengths and textural variables. Compared with other data, this prediction result was still very satisfactory in the GA-SVR model, indicating that data fusion was an effective way to enhance hyperspectral imaging ability for the determination of free amino acid values in yellow tea.