Cargando…
Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic pulmonary condition that affects hundreds of millions of people all over the world. Many COPD patients got readmitted to hospital within 30 days after discharge due to various reasons. Such readmission can usually be avoided if addi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382784/ https://www.ncbi.nlm.nih.gov/pubmed/30787351 http://dx.doi.org/10.1038/s41598-019-39071-y |
_version_ | 1783396716849922048 |
---|---|
author | Min, Xu Yu, Bin Wang, Fei |
author_facet | Min, Xu Yu, Bin Wang, Fei |
author_sort | Min, Xu |
collection | PubMed |
description | Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic pulmonary condition that affects hundreds of millions of people all over the world. Many COPD patients got readmitted to hospital within 30 days after discharge due to various reasons. Such readmission can usually be avoided if additional attention is paid to patients with high readmission risk and appropriate actions are taken. This makes early prediction of the hospital readmission risk an important problem. The goal of this paper is to conduct a systematic study on developing different types of machine learning models, including both deep and non-deep ones, for predicting the readmission risk of COPD patients. We evaluate those different approaches on a real world database containing the medical claims of 111,992 patients from the Geisinger Health System from January 2004 to September 2015. The patient features we build the machine learning models upon include both knowledge-driven ones, which are the features extracted according to clinical knowledge potentially related to COPD readmission, and data-driven features, which are extracted from the patient data themselves. Our analysis showed that the prediction performance in terms of Area Under the receiver operating characteristic (ROC) Curve (AUC) can be improved from around 0.60 using knowledge-driven features, to 0.653 by combining both knowledge-driven and data-driven features, based on the one-year claims history before discharge. Moreover, we also demonstrate that the complex deep learning models in this case cannot really improve the prediction performance, with the best AUC around 0.65. |
format | Online Article Text |
id | pubmed-6382784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63827842019-02-22 Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD Min, Xu Yu, Bin Wang, Fei Sci Rep Article Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic pulmonary condition that affects hundreds of millions of people all over the world. Many COPD patients got readmitted to hospital within 30 days after discharge due to various reasons. Such readmission can usually be avoided if additional attention is paid to patients with high readmission risk and appropriate actions are taken. This makes early prediction of the hospital readmission risk an important problem. The goal of this paper is to conduct a systematic study on developing different types of machine learning models, including both deep and non-deep ones, for predicting the readmission risk of COPD patients. We evaluate those different approaches on a real world database containing the medical claims of 111,992 patients from the Geisinger Health System from January 2004 to September 2015. The patient features we build the machine learning models upon include both knowledge-driven ones, which are the features extracted according to clinical knowledge potentially related to COPD readmission, and data-driven features, which are extracted from the patient data themselves. Our analysis showed that the prediction performance in terms of Area Under the receiver operating characteristic (ROC) Curve (AUC) can be improved from around 0.60 using knowledge-driven features, to 0.653 by combining both knowledge-driven and data-driven features, based on the one-year claims history before discharge. Moreover, we also demonstrate that the complex deep learning models in this case cannot really improve the prediction performance, with the best AUC around 0.65. Nature Publishing Group UK 2019-02-20 /pmc/articles/PMC6382784/ /pubmed/30787351 http://dx.doi.org/10.1038/s41598-019-39071-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Min, Xu Yu, Bin Wang, Fei Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title | Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title_full | Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title_fullStr | Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title_full_unstemmed | Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title_short | Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD |
title_sort | predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: a case study on copd |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382784/ https://www.ncbi.nlm.nih.gov/pubmed/30787351 http://dx.doi.org/10.1038/s41598-019-39071-y |
work_keys_str_mv | AT minxu predictivemodelingofthehospitalreadmissionriskfrompatientsclaimsdatausingmachinelearningacasestudyoncopd AT yubin predictivemodelingofthehospitalreadmissionriskfrompatientsclaimsdatausingmachinelearningacasestudyoncopd AT wangfei predictivemodelingofthehospitalreadmissionriskfrompatientsclaimsdatausingmachinelearningacasestudyoncopd |