Cargando…
Cell Identity Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks
Understanding cell identity is an important task in many biomedical areas. Expression patterns of specific marker genes have been used to characterize some limited cell types, but exclusive markers are not available for many cell types. A second approach is to use machine learning to discriminate ce...
Autores principales: | Abdolhosseini, Farzad, Azarkhalili, Behrooz, Maazallahi, Abbas, Kamal, Aryan, Motahari, Seyed Abolfazl, Sharifi-Zarchi, Ali, Chitsaz, Hamidreza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382891/ https://www.ncbi.nlm.nih.gov/pubmed/30787315 http://dx.doi.org/10.1038/s41598-019-38798-y |
Ejemplares similares
-
DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome
por: Azarkhalili, Behrooz, et al.
Publicado: (2019) -
Pan-cancer analysis of microRNA expression profiles highlights microRNAs enriched in normal body cells as effective suppressors of multiple tumor types: A study based on TCGA database
por: Moradi, Sharif, et al.
Publicado: (2022) -
ARYANA: Aligning Reads by Yet Another Approach
por: Gholami, Milad, et al.
Publicado: (2014) -
Understanding identity
por: Woodward, Kath
Publicado: (2002) -
Separated and overlapping neural coding of face and body identity
por: Foster, Celia, et al.
Publicado: (2021)