Cargando…
Explaining the unique nature of individual gait patterns with deep learning
Machine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very successfully a plethora of tasks and provide new predictive models for complex physical, chemical, biological and social systems. However, in most cases this comes with the disadvantage of acting as a b...
Autores principales: | Horst, Fabian, Lapuschkin, Sebastian, Samek, Wojciech, Müller, Klaus-Robert, Schöllhorn, Wolfgang I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382912/ https://www.ncbi.nlm.nih.gov/pubmed/30787319 http://dx.doi.org/10.1038/s41598-019-38748-8 |
Ejemplares similares
-
Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
por: Hägele, Miriam, et al.
Publicado: (2020) -
Unmasking Clever Hans predictors and assessing what machines really learn
por: Lapuschkin, Sebastian, et al.
Publicado: (2019) -
Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression
por: Horst, Fabian, et al.
Publicado: (2017) -
Modeling biological individuality using machine learning: A study on human gait
por: Horst, Fabian, et al.
Publicado: (2023) -
Gutenberg Gait Database, a ground reaction force database of level overground walking in healthy individuals
por: Horst, Fabian, et al.
Publicado: (2021)