Cargando…
Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus
Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than A. fumigatus is unc...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382966/ https://www.ncbi.nlm.nih.gov/pubmed/30787113 http://dx.doi.org/10.1128/mSphere.00018-19 |
_version_ | 1783396761047400448 |
---|---|
author | Mead, Matthew E. Knowles, Sonja L. Raja, Huzefa A. Beattie, Sarah R. Kowalski, Caitlin H. Steenwyk, Jacob L. Silva, Lilian P. Chiaratto, Jessica Ries, Laure N. A. Goldman, Gustavo H. Cramer, Robert A. Oberlies, Nicholas H. Rokas, Antonis |
author_facet | Mead, Matthew E. Knowles, Sonja L. Raja, Huzefa A. Beattie, Sarah R. Kowalski, Caitlin H. Steenwyk, Jacob L. Silva, Lilian P. Chiaratto, Jessica Ries, Laure N. A. Goldman, Gustavo H. Cramer, Robert A. Oberlies, Nicholas H. Rokas, Antonis |
author_sort | Mead, Matthew E. |
collection | PubMed |
description | Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than A. fumigatus is unclear. A comparison of A. fischeri and A. fumigatus for pathogenic, genomic, and secondary metabolic traits revealed multiple differences in pathogenesis-related phenotypes. We observed that A. fischeri NRRL 181 is less virulent than A. fumigatus strain CEA10 in multiple animal models of disease, grows slower in low-oxygen environments, and is more sensitive to oxidative stress. Strikingly, the observed differences for some traits are of the same order of magnitude as those previously reported between A. fumigatus strains. In contrast, similar to what has previously been reported, the two species exhibit high genomic similarity; ∼90% of the A. fumigatus proteome is conserved in A. fischeri, including 48/49 genes known to be involved in A. fumigatus virulence. However, only 10/33 A. fumigatus biosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are conserved in A. fischeri and only 13/48 A. fischeri BGCs are conserved in A. fumigatus. Detailed chemical characterization of A. fischeri cultures grown on multiple substrates identified multiple secondary metabolites, including two new compounds and one never before isolated as a natural product. Additionally, an A. fischeri deletion mutant of laeA, a master regulator of secondary metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that regulation of secondary metabolism is at least partially conserved. These results suggest that the nonpathogenic A. fischeri possesses many of the genes important for A. fumigatus pathogenicity but is divergent with respect to its ability to thrive under host-relevant conditions and its secondary metabolism. IMPORTANCE Aspergillus fumigatus is the primary cause of aspergillosis, a devastating ensemble of diseases associated with severe morbidity and mortality worldwide. A. fischeri is a close relative of A. fumigatus but is not generally observed to cause human disease. To gain insights into the underlying causes of this remarkable difference in pathogenicity, we compared two representative strains (one from each species) for a range of pathogenesis-relevant biological and chemical characteristics. We found that disease progression in multiple A. fischeri mouse models was slower and caused less mortality than A. fumigatus. Remarkably, the observed differences between A. fischeri and A. fumigatus strains examined here closely resembled those previously described for two commonly studied A. fumigatus strains, AF293 and CEA10. A. fischeri and A. fumigatus exhibited different growth profiles when placed in a range of stress-inducing conditions encountered during infection, such as low levels of oxygen and the presence of chemicals that induce the production of reactive oxygen species. We also found that the vast majority of A. fumigatus genes known to be involved in virulence are conserved in A. fischeri, whereas the two species differ significantly in their secondary metabolic pathways. These similarities and differences that we report here are the first step toward understanding the evolutionary origin of a major fungal pathogen. |
format | Online Article Text |
id | pubmed-6382966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-63829662019-02-22 Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus Mead, Matthew E. Knowles, Sonja L. Raja, Huzefa A. Beattie, Sarah R. Kowalski, Caitlin H. Steenwyk, Jacob L. Silva, Lilian P. Chiaratto, Jessica Ries, Laure N. A. Goldman, Gustavo H. Cramer, Robert A. Oberlies, Nicholas H. Rokas, Antonis mSphere Research Article Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than A. fumigatus is unclear. A comparison of A. fischeri and A. fumigatus for pathogenic, genomic, and secondary metabolic traits revealed multiple differences in pathogenesis-related phenotypes. We observed that A. fischeri NRRL 181 is less virulent than A. fumigatus strain CEA10 in multiple animal models of disease, grows slower in low-oxygen environments, and is more sensitive to oxidative stress. Strikingly, the observed differences for some traits are of the same order of magnitude as those previously reported between A. fumigatus strains. In contrast, similar to what has previously been reported, the two species exhibit high genomic similarity; ∼90% of the A. fumigatus proteome is conserved in A. fischeri, including 48/49 genes known to be involved in A. fumigatus virulence. However, only 10/33 A. fumigatus biosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are conserved in A. fischeri and only 13/48 A. fischeri BGCs are conserved in A. fumigatus. Detailed chemical characterization of A. fischeri cultures grown on multiple substrates identified multiple secondary metabolites, including two new compounds and one never before isolated as a natural product. Additionally, an A. fischeri deletion mutant of laeA, a master regulator of secondary metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that regulation of secondary metabolism is at least partially conserved. These results suggest that the nonpathogenic A. fischeri possesses many of the genes important for A. fumigatus pathogenicity but is divergent with respect to its ability to thrive under host-relevant conditions and its secondary metabolism. IMPORTANCE Aspergillus fumigatus is the primary cause of aspergillosis, a devastating ensemble of diseases associated with severe morbidity and mortality worldwide. A. fischeri is a close relative of A. fumigatus but is not generally observed to cause human disease. To gain insights into the underlying causes of this remarkable difference in pathogenicity, we compared two representative strains (one from each species) for a range of pathogenesis-relevant biological and chemical characteristics. We found that disease progression in multiple A. fischeri mouse models was slower and caused less mortality than A. fumigatus. Remarkably, the observed differences between A. fischeri and A. fumigatus strains examined here closely resembled those previously described for two commonly studied A. fumigatus strains, AF293 and CEA10. A. fischeri and A. fumigatus exhibited different growth profiles when placed in a range of stress-inducing conditions encountered during infection, such as low levels of oxygen and the presence of chemicals that induce the production of reactive oxygen species. We also found that the vast majority of A. fumigatus genes known to be involved in virulence are conserved in A. fischeri, whereas the two species differ significantly in their secondary metabolic pathways. These similarities and differences that we report here are the first step toward understanding the evolutionary origin of a major fungal pathogen. American Society for Microbiology 2019-02-20 /pmc/articles/PMC6382966/ /pubmed/30787113 http://dx.doi.org/10.1128/mSphere.00018-19 Text en Copyright © 2019 Mead et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Mead, Matthew E. Knowles, Sonja L. Raja, Huzefa A. Beattie, Sarah R. Kowalski, Caitlin H. Steenwyk, Jacob L. Silva, Lilian P. Chiaratto, Jessica Ries, Laure N. A. Goldman, Gustavo H. Cramer, Robert A. Oberlies, Nicholas H. Rokas, Antonis Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title | Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title_full | Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title_fullStr | Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title_full_unstemmed | Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title_short | Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus |
title_sort | characterizing the pathogenic, genomic, and chemical traits of aspergillus fischeri, a close relative of the major human fungal pathogen aspergillus fumigatus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382966/ https://www.ncbi.nlm.nih.gov/pubmed/30787113 http://dx.doi.org/10.1128/mSphere.00018-19 |
work_keys_str_mv | AT meadmatthewe characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT knowlessonjal characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT rajahuzefaa characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT beattiesarahr characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT kowalskicaitlinh characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT steenwykjacobl characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT silvalilianp characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT chiarattojessica characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT rieslaurena characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT goldmangustavoh characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT cramerroberta characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT oberliesnicholash characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus AT rokasantonis characterizingthepathogenicgenomicandchemicaltraitsofaspergillusfischeriacloserelativeofthemajorhumanfungalpathogenaspergillusfumigatus |