Cargando…
EnDisease: a manually curated database for enhancer-disease associations
Genome-wide association studies have successfully identified thousands of genomic loci potentially associated with hundreds of complex traits in the past decade. Nevertheless, the fact that more than 90% of such disease-associated variants lie in non-coding DNA with unknown functional implications h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382991/ https://www.ncbi.nlm.nih.gov/pubmed/30788500 http://dx.doi.org/10.1093/database/baz020 |
Sumario: | Genome-wide association studies have successfully identified thousands of genomic loci potentially associated with hundreds of complex traits in the past decade. Nevertheless, the fact that more than 90% of such disease-associated variants lie in non-coding DNA with unknown functional implications has been appealing for advanced analysis of plenty of genetic variants. Toward this goal, recent studies focusing on individual non-coding variants have revealed that complex diseases are often the consequences of erroneous interactions between enhancers and their target genes. However, such enhancer-disease associations are dispersed in a variety of independent studies, and thus far it is still difficult to carry out comprehensive downstream analysis with these experimentally supported enhancer-disease associations. To fill in this gap, we collected experimentally supported associations between complex diseases and enhancers and then developed a manually curated database called EnDisease (http://bioinfo.au.tsinghua.edu.cn/endisease/). Concretely, EnDisease documents 535 associations between 133 diseases and 454 enhancers, extracted from 199 articles. Moreover, after annotating these enhancers using 649 human and 115 mouse DNase-seq experiments, we find that cancer-related enhancers tend to be open across a large number of cell types. This database provides a user-friendly interface for browsing and searching, and it also allows users to download data freely. EnDisease has the potential to become a helpful and important resource for researchers who aim to understand the molecular mechanisms of enhancers involved in complex diseases. |
---|