Cargando…

Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1

Rare variants in the cardiac potassium channel K(V)7.1 (KCNQ1) and sodium channel Na(V)1.5 (SCN5A) are implicated in genetic disorders of heart rhythm, including congenital long QT and Brugada syndromes (LQTS, BrS), but also occur in reference populations. We previously reported two sets of Na(V)1.5...

Descripción completa

Detalles Bibliográficos
Autores principales: Kroncke, Brett M., Mendenhall, Jeffrey, Smith, Derek K., Sanders, Charles R., Capra, John A., George, Alfred L., Blume, Jeffrey D., Meiler, Jens, Roden, Dan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383132/
https://www.ncbi.nlm.nih.gov/pubmed/30828412
http://dx.doi.org/10.1016/j.csbj.2019.01.008
_version_ 1783396785284186112
author Kroncke, Brett M.
Mendenhall, Jeffrey
Smith, Derek K.
Sanders, Charles R.
Capra, John A.
George, Alfred L.
Blume, Jeffrey D.
Meiler, Jens
Roden, Dan M.
author_facet Kroncke, Brett M.
Mendenhall, Jeffrey
Smith, Derek K.
Sanders, Charles R.
Capra, John A.
George, Alfred L.
Blume, Jeffrey D.
Meiler, Jens
Roden, Dan M.
author_sort Kroncke, Brett M.
collection PubMed
description Rare variants in the cardiac potassium channel K(V)7.1 (KCNQ1) and sodium channel Na(V)1.5 (SCN5A) are implicated in genetic disorders of heart rhythm, including congenital long QT and Brugada syndromes (LQTS, BrS), but also occur in reference populations. We previously reported two sets of Na(V)1.5 (n = 356) and K(V)7.1 (n = 144) variants with in vitro characterized channel currents gathered from the literature. Here we investigated the ability to predict commonly reported Na(V)1.5 and K(V)7.1 variant functional perturbations by leveraging diverse features including variant classifiers PROVEAN, PolyPhen-2, and SIFT; evolutionary rate and BLAST position specific scoring matrices (PSSM); and structure-based features including “functional densities” which is a measure of the density of pathogenic variants near the residue of interest. Structure-based functional densities were the most significant features for predicting Na(V)1.5 peak current (adj. R(2) = 0.27) and K(V)7.1 + KCNE1 half-maximal voltage of activation (adj. R(2) = 0.29). Additionally, use of structure-based functional density values improves loss-of-function classification of SCN5A variants with an ROC-AUC of 0.78 compared with other predictive classifiers (AUC = 0.69; two-sided DeLong test p = .01). These results suggest structural data can inform predictions of the effect of uncharacterized SCN5A and KCNQ1 variants to provide a deeper understanding of their burden on carriers.
format Online
Article
Text
id pubmed-6383132
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-63831322019-03-01 Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1 Kroncke, Brett M. Mendenhall, Jeffrey Smith, Derek K. Sanders, Charles R. Capra, John A. George, Alfred L. Blume, Jeffrey D. Meiler, Jens Roden, Dan M. Comput Struct Biotechnol J Research Article Rare variants in the cardiac potassium channel K(V)7.1 (KCNQ1) and sodium channel Na(V)1.5 (SCN5A) are implicated in genetic disorders of heart rhythm, including congenital long QT and Brugada syndromes (LQTS, BrS), but also occur in reference populations. We previously reported two sets of Na(V)1.5 (n = 356) and K(V)7.1 (n = 144) variants with in vitro characterized channel currents gathered from the literature. Here we investigated the ability to predict commonly reported Na(V)1.5 and K(V)7.1 variant functional perturbations by leveraging diverse features including variant classifiers PROVEAN, PolyPhen-2, and SIFT; evolutionary rate and BLAST position specific scoring matrices (PSSM); and structure-based features including “functional densities” which is a measure of the density of pathogenic variants near the residue of interest. Structure-based functional densities were the most significant features for predicting Na(V)1.5 peak current (adj. R(2) = 0.27) and K(V)7.1 + KCNE1 half-maximal voltage of activation (adj. R(2) = 0.29). Additionally, use of structure-based functional density values improves loss-of-function classification of SCN5A variants with an ROC-AUC of 0.78 compared with other predictive classifiers (AUC = 0.69; two-sided DeLong test p = .01). These results suggest structural data can inform predictions of the effect of uncharacterized SCN5A and KCNQ1 variants to provide a deeper understanding of their burden on carriers. Research Network of Computational and Structural Biotechnology 2019-02-01 /pmc/articles/PMC6383132/ /pubmed/30828412 http://dx.doi.org/10.1016/j.csbj.2019.01.008 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Kroncke, Brett M.
Mendenhall, Jeffrey
Smith, Derek K.
Sanders, Charles R.
Capra, John A.
George, Alfred L.
Blume, Jeffrey D.
Meiler, Jens
Roden, Dan M.
Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title_full Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title_fullStr Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title_full_unstemmed Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title_short Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1
title_sort protein structure aids predicting functional perturbation of missense variants in scn5a and kcnq1
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383132/
https://www.ncbi.nlm.nih.gov/pubmed/30828412
http://dx.doi.org/10.1016/j.csbj.2019.01.008
work_keys_str_mv AT kronckebrettm proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT mendenhalljeffrey proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT smithderekk proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT sanderscharlesr proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT caprajohna proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT georgealfredl proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT blumejeffreyd proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT meilerjens proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1
AT rodendanm proteinstructureaidspredictingfunctionalperturbationofmissensevariantsinscn5aandkcnq1