Cargando…

Orthogonal Stochastic Duality Functions from Lie Algebra Representations

We obtain stochastic duality functions for specific Markov processes using representation theory of Lie algebras. The duality functions come from the kernel of a unitary intertwiner between [Formula: see text] -representations, which provides (generalized) orthogonality relations for the duality fun...

Descripción completa

Detalles Bibliográficos
Autor principal: Groenevelt, Wolter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383627/
https://www.ncbi.nlm.nih.gov/pubmed/30872864
http://dx.doi.org/10.1007/s10955-018-2178-7
Descripción
Sumario:We obtain stochastic duality functions for specific Markov processes using representation theory of Lie algebras. The duality functions come from the kernel of a unitary intertwiner between [Formula: see text] -representations, which provides (generalized) orthogonality relations for the duality functions. In particular, we consider representations of the Heisenberg algebra and [Formula: see text] . Both cases lead to orthogonal (self-)duality functions in terms of hypergeometric functions for specific interacting particle processes and interacting diffusion processes.