Cargando…

Effect of pressure profile of shock waves on lipid membrane deformation

Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kfoury, Ralph, Marzban, Bahador, Makki, Emad, Greenfield, Michael L., Yuan, Hongyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383940/
https://www.ncbi.nlm.nih.gov/pubmed/30789948
http://dx.doi.org/10.1371/journal.pone.0212566
Descripción
Sumario:Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile of shock waves, such as peak pressure and pulse duration, influences membrane properties is limited. Here we study the response of lipid bilayer membranes to shock pulses with different pressure profiles using atomistic molecular dynamics simulations. From our simulation results, we find that the transient deformation/disordering of the membrane depends on both the magnitude and the pulse duration of the pressure profile of the shock pulse. For a low pressure impulse, peak pressure has a dominant effect on membrane structural changes, while for the high pressure impulse, we find that there exists an optimal pulse duration at which membrane deformation/disordering is maximized.