Cargando…
Dual deep neural network-based classifiers to detect experimental seizures
Manually reviewing electroencephalograms (EEGs) is labor-intensive and demands automated seizure detection systems. To construct an efficient and robust event detector for experimental seizures from continuous EEG monitoring, we combined spectral analysis and deep neural networks. A deep neural netw...
Autores principales: | Jang, Hyun-Jong, Cho, Kyung-Ok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Physiological Society and The Korean Society of Pharmacology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384195/ https://www.ncbi.nlm.nih.gov/pubmed/30820157 http://dx.doi.org/10.4196/kjpp.2019.23.2.131 |
Ejemplares similares
-
Comparison of different input modalities and network structures for deep learning-based seizure detection
por: Cho, Kyung-Ok, et al.
Publicado: (2020) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network
por: Yogarajan, G., et al.
Publicado: (2023) -
Topolnogical classifier for detecting the emergence of epileptic seizures
por: Piangerelli, Marco, et al.
Publicado: (2018) -
DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier
por: Ashraf, Imran, et al.
Publicado: (2019)