Cargando…
Detection of Bleeding Events in Electronic Health Record Notes Using Convolutional Neural Network Models Enhanced With Recurrent Neural Network Autoencoders: Deep Learning Approach
BACKGROUND: Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious...
Autores principales: | Li, Rumeng, Hu, Baotian, Liu, Feifan, Liu, Weisong, Cunningham, Francesca, McManus, David D, Yu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384542/ https://www.ncbi.nlm.nih.gov/pubmed/30735140 http://dx.doi.org/10.2196/10788 |
Ejemplares similares
-
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
An Efficient Compression Method for Lightning Electromagnetic Pulse Signal Based on Convolutional Neural Network and Autoencoder
por: Guo, Jinhua, et al.
Publicado: (2023) -
Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data
por: García-Ordás, María Teresa, et al.
Publicado: (2020) -
Robust Computationally-Efficient Wireless Emitter Classification Using Autoencoders and Convolutional Neural Networks
por: Almazrouei, Ebtesam, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022)