Cargando…
Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development
(1) Background: Membrane lipids have been disregarded in drug development throughout the years. Recently, they gained attention in drug design as targets, but they are still disregarded in the latter stages. Thus, this study aims to highlight the relevance of considering membrane lipids in the precl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384739/ https://www.ncbi.nlm.nih.gov/pubmed/30709010 http://dx.doi.org/10.3390/molecules24030516 |
_version_ | 1783397048177917952 |
---|---|
author | Pereira-Leite, Catarina Lopes-de-Campos, Daniela Fontaine, Philippe Cuccovia, Iolanda M. Nunes, Cláudia Reis, Salette |
author_facet | Pereira-Leite, Catarina Lopes-de-Campos, Daniela Fontaine, Philippe Cuccovia, Iolanda M. Nunes, Cláudia Reis, Salette |
author_sort | Pereira-Leite, Catarina |
collection | PubMed |
description | (1) Background: Membrane lipids have been disregarded in drug development throughout the years. Recently, they gained attention in drug design as targets, but they are still disregarded in the latter stages. Thus, this study aims to highlight the relevance of considering membrane lipids in the preclinical phase of drug development. (2) Methods: The interactions of a drug candidate for clinical use (licofelone) with a membrane model system made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated by combining Langmuir isotherms, Brewster angle microscopy (BAM), polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and grazing-incidence X-ray diffraction (GIXD) measurements. (3) Results: Licofelone caused the expansion of the DPPC isotherm without changing the lipid phase transition profile. Moreover, licofelone induced the reduction of DPPC packing density, while increasing the local order of the DPPC acyl chains. (4) Conclusions: The licofelone-induced alterations in the structural organization of phosphatidylcholine monolayers may be related to its pharmacological actions. Thus, the combination of studying drug-membrane interactions with the pharmacological characterization that occurs in the preclinical stage may gather additional information about the mechanisms of action and toxicity of drug candidates. Ultimately, the addition of this innovative step shall improve the success rate of drug development. |
format | Online Article Text |
id | pubmed-6384739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63847392019-02-23 Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development Pereira-Leite, Catarina Lopes-de-Campos, Daniela Fontaine, Philippe Cuccovia, Iolanda M. Nunes, Cláudia Reis, Salette Molecules Article (1) Background: Membrane lipids have been disregarded in drug development throughout the years. Recently, they gained attention in drug design as targets, but they are still disregarded in the latter stages. Thus, this study aims to highlight the relevance of considering membrane lipids in the preclinical phase of drug development. (2) Methods: The interactions of a drug candidate for clinical use (licofelone) with a membrane model system made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated by combining Langmuir isotherms, Brewster angle microscopy (BAM), polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and grazing-incidence X-ray diffraction (GIXD) measurements. (3) Results: Licofelone caused the expansion of the DPPC isotherm without changing the lipid phase transition profile. Moreover, licofelone induced the reduction of DPPC packing density, while increasing the local order of the DPPC acyl chains. (4) Conclusions: The licofelone-induced alterations in the structural organization of phosphatidylcholine monolayers may be related to its pharmacological actions. Thus, the combination of studying drug-membrane interactions with the pharmacological characterization that occurs in the preclinical stage may gather additional information about the mechanisms of action and toxicity of drug candidates. Ultimately, the addition of this innovative step shall improve the success rate of drug development. MDPI 2019-01-31 /pmc/articles/PMC6384739/ /pubmed/30709010 http://dx.doi.org/10.3390/molecules24030516 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pereira-Leite, Catarina Lopes-de-Campos, Daniela Fontaine, Philippe Cuccovia, Iolanda M. Nunes, Cláudia Reis, Salette Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title | Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title_full | Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title_fullStr | Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title_full_unstemmed | Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title_short | Licofelone-DPPC Interactions: Putting Membrane Lipids on the Radar of Drug Development |
title_sort | licofelone-dppc interactions: putting membrane lipids on the radar of drug development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384739/ https://www.ncbi.nlm.nih.gov/pubmed/30709010 http://dx.doi.org/10.3390/molecules24030516 |
work_keys_str_mv | AT pereiraleitecatarina licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment AT lopesdecamposdaniela licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment AT fontainephilippe licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment AT cuccoviaiolandam licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment AT nunesclaudia licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment AT reissalette licofelonedppcinteractionsputtingmembranelipidsontheradarofdrugdevelopment |