Cargando…

Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument

In this paper, the reliability of a finite element (FE) model including carbon-fibre reinforced plastics (CFRPs) is evaluated for a case of a complex thin-wall honeycomb structure designed for a scientific instrument, such as a calorimeter. Mechanical calculations were performed using FE models incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Casarejos, Enrique, Riol, Jose C., Lopez-Campos, Jose A., Segade, Abraham, Vilan, Jose A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384826/
https://www.ncbi.nlm.nih.gov/pubmed/30764504
http://dx.doi.org/10.3390/ma12030489
_version_ 1783397067728617472
author Casarejos, Enrique
Riol, Jose C.
Lopez-Campos, Jose A.
Segade, Abraham
Vilan, Jose A.
author_facet Casarejos, Enrique
Riol, Jose C.
Lopez-Campos, Jose A.
Segade, Abraham
Vilan, Jose A.
author_sort Casarejos, Enrique
collection PubMed
description In this paper, the reliability of a finite element (FE) model including carbon-fibre reinforced plastics (CFRPs) is evaluated for a case of a complex thin-wall honeycomb structure designed for a scientific instrument, such as a calorimeter. Mechanical calculations were performed using FE models including CFRPs, which required a specific definition to describe the micro-mechanical behaviour of the orthotropic materials coupled to homogeneous ones. There are well-known commercial software packages used as powerful tools for analyzing structures; however, for complex (many-parts) structures, the models become largely time consuming for both definition and calculation, which limits the appropriate feedback for the structure’s design. This study introduces a method to reduce a highly nonlinear model, including CFRPs, into a robust, simplified and realistic FE model capable of describing the deformations of the structure with known uncertainties. Therefore, to calculate the deviations of our model, displacement measurements in a reduced mechanical setup were performed, and then a variety of FE models were studied with the objective to find the simplest model with reliable results. The approach developed in this work leads to concluding that the deformations evaluated, including the uncertainties, were below the actual production tolerances, which makes the proposed model a successful tool for the designing process. Ultimately, this study serves as a future reference for complex projects requiring intensive mechanical evaluations for designing decisions.
format Online
Article
Text
id pubmed-6384826
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63848262019-02-23 Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument Casarejos, Enrique Riol, Jose C. Lopez-Campos, Jose A. Segade, Abraham Vilan, Jose A. Materials (Basel) Article In this paper, the reliability of a finite element (FE) model including carbon-fibre reinforced plastics (CFRPs) is evaluated for a case of a complex thin-wall honeycomb structure designed for a scientific instrument, such as a calorimeter. Mechanical calculations were performed using FE models including CFRPs, which required a specific definition to describe the micro-mechanical behaviour of the orthotropic materials coupled to homogeneous ones. There are well-known commercial software packages used as powerful tools for analyzing structures; however, for complex (many-parts) structures, the models become largely time consuming for both definition and calculation, which limits the appropriate feedback for the structure’s design. This study introduces a method to reduce a highly nonlinear model, including CFRPs, into a robust, simplified and realistic FE model capable of describing the deformations of the structure with known uncertainties. Therefore, to calculate the deviations of our model, displacement measurements in a reduced mechanical setup were performed, and then a variety of FE models were studied with the objective to find the simplest model with reliable results. The approach developed in this work leads to concluding that the deformations evaluated, including the uncertainties, were below the actual production tolerances, which makes the proposed model a successful tool for the designing process. Ultimately, this study serves as a future reference for complex projects requiring intensive mechanical evaluations for designing decisions. MDPI 2019-02-05 /pmc/articles/PMC6384826/ /pubmed/30764504 http://dx.doi.org/10.3390/ma12030489 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Casarejos, Enrique
Riol, Jose C.
Lopez-Campos, Jose A.
Segade, Abraham
Vilan, Jose A.
Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title_full Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title_fullStr Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title_full_unstemmed Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title_short Evaluation of an FE Model for the Design of a Complex Thin-Wall CFRP Structure for a Scientific Instrument
title_sort evaluation of an fe model for the design of a complex thin-wall cfrp structure for a scientific instrument
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384826/
https://www.ncbi.nlm.nih.gov/pubmed/30764504
http://dx.doi.org/10.3390/ma12030489
work_keys_str_mv AT casarejosenrique evaluationofanfemodelforthedesignofacomplexthinwallcfrpstructureforascientificinstrument
AT rioljosec evaluationofanfemodelforthedesignofacomplexthinwallcfrpstructureforascientificinstrument
AT lopezcamposjosea evaluationofanfemodelforthedesignofacomplexthinwallcfrpstructureforascientificinstrument
AT segadeabraham evaluationofanfemodelforthedesignofacomplexthinwallcfrpstructureforascientificinstrument
AT vilanjosea evaluationofanfemodelforthedesignofacomplexthinwallcfrpstructureforascientificinstrument