Cargando…
Phylostratigraphic analysis of gene co-expression network reveals the evolution of functional modules for ovarian cancer
Ovarian cancer (OV) is an extremely lethal disease. However, the evolutionary machineries of OV are still largely unknown. Here, we used a method that combines phylostratigraphy information with gene co-expression networks to extensively study the evolutionary compositions of OV. The present co-expr...
Autores principales: | Zhang, Luoyan, Tan, Yi, Fan, Shoujin, Zhang, Xuejie, Zhang, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384884/ https://www.ncbi.nlm.nih.gov/pubmed/30796309 http://dx.doi.org/10.1038/s41598-019-40023-9 |
Ejemplares similares
-
Identification of modules and hub genes associated with platinum-based chemotherapy resistance and treatment response in ovarian cancer by weighted gene co-expression network analysis
por: Zhang, Luoyan, et al.
Publicado: (2019) -
Toward Reducing Phylostratigraphic Errors and Biases
por: Moyers, Bryan A, et al.
Publicado: (2018) -
No Evidence for Phylostratigraphic Bias Impacting Inferences on Patterns of Gene Emergence and Evolution
por: Domazet-Lošo, Tomislav, et al.
Publicado: (2017) -
Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars
por: Zhang, Luoyan, et al.
Publicado: (2022) -
Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves
por: Zhang, Xuejie, et al.
Publicado: (2020)