Cargando…

Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity

In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence (‘NFGAILSS’) derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Tambi, Richa, Morimoto, Gentaro, Kosuda, Satoshi, Taiji, Makoto, Kuroda, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384915/
https://www.ncbi.nlm.nih.gov/pubmed/30792475
http://dx.doi.org/10.1038/s41598-018-38401-w
Descripción
Sumario:In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence (‘NFGAILSS’) derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN’s special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18–26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.