Cargando…

Thermal Modeling of Tool Temperature Distribution during High Pressure Coolant Assisted Turning of Inconel 718

This paper presents a finite-element modeling (FEM) of tool temperature distribution during high pressure coolant assisted turning of Inconel 718, which belongs to the heat resistance superalloys of the Nickel-Chromium family. Machining trials were conducted under four machining conditions: dry, con...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Addona, Doriana M., Raykar, Sunil J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384952/
https://www.ncbi.nlm.nih.gov/pubmed/30696088
http://dx.doi.org/10.3390/ma12030408
Descripción
Sumario:This paper presents a finite-element modeling (FEM) of tool temperature distribution during high pressure coolant assisted turning of Inconel 718, which belongs to the heat resistance superalloys of the Nickel-Chromium family. Machining trials were conducted under four machining conditions: dry, conventional wet machining, high pressure coolant at 50 bar, and high pressure coolant at 80 bar. Temperature during machining plays a very important role in the overall performance of machining processes. Since in the current investigation a high pressure coolant jet was supplied in the cutting zone between tool and work material, it was a very difficult task to measure the tool temperature correctly. Thus, FEM was used as a modeling tool to predict tool temperature. The results of the modeling showed that the temperature was considerably influenced by coolant pressure: the high pressure jet was able to penetrate into the interface between tool and work material, thus providing both an efficient cooling and effective lubricating action.