Cargando…
A method to identify respiratory virus infections in clinical samples using next-generation sequencing
Respiratory virus infections are very common. Such infections impose an enormous economic burden and occasionally lead to death. Furthermore, every few decades, respiratory virus pandemics emerge, putting the entire world population at risk. Thus, there is an urgent need to quickly and precisely ide...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384955/ https://www.ncbi.nlm.nih.gov/pubmed/30796243 http://dx.doi.org/10.1038/s41598-018-37483-w |
Sumario: | Respiratory virus infections are very common. Such infections impose an enormous economic burden and occasionally lead to death. Furthermore, every few decades, respiratory virus pandemics emerge, putting the entire world population at risk. Thus, there is an urgent need to quickly and precisely identify the infecting agent in a clinical setting. However, in many patients with influenza-like symptoms (ILS) the identity of the underlying pathogen remains unknown. In addition, it takes time and effort to individually identify the virus responsible for the ILS. Here, we present a new next-generation sequencing (NGS)-based method that enables rapid and robust identification of pathogens in a pool of clinical samples without the need for specific primers. The method is aimed at rapidly uncovering a potentially common pathogen affecting many samples with an unidentified source of disease. |
---|