Cargando…

Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties

Considering persistent years, many researchers continuously seek an optimum way to utilize the idea of magnetorheology (MR) materials to be practically used for everyday life, particularly concerning resistivity sensing application. The rheology and resistivity of a graphite (Gr)-based magnetorheolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shabdin, Muhammad Kashfi, Abdul Rahman, Mohd Azizi, Mazlan, Saiful Amri, Ubaidillah, Hapipi, Norhiwani Mohd, Adiputra, Dimas, Abdul Aziz, Siti Aishah, Bahiuddin, Irfan, Choi, Seung-Bok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384995/
https://www.ncbi.nlm.nih.gov/pubmed/30691190
http://dx.doi.org/10.3390/ma12030391
Descripción
Sumario:Considering persistent years, many researchers continuously seek an optimum way to utilize the idea of magnetorheology (MR) materials to be practically used for everyday life, particularly concerning resistivity sensing application. The rheology and resistivity of a graphite (Gr)-based magnetorheological elastomer (Gr-MRE) were experimentally evaluated in the present research. Magnetorheological elastomer (MRE) samples were prepared by adding Gr as a new additive during MRE fabrication. The effect of additional Gr on the rheological and resistivity properties were investigated and compared with those of typical MREs without a Gr additive. Morphological aspects of Gr-MRE were characterized using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Rheological properties under different magnetic fields were evaluated using a parallel-plate rheometer. Subsequently, the resistivity of all samples was measured under different applied forces and magnetic fields. From the resistivity evaluation, two relationship curves resistance (R) under different applied forces (F) and different magnetic fields (B) were established and plotted by using an empirical model. It was observed from the FESEM images that the presence of Gr fractions arrangement contributes to the conductivity of MRE. It was also observed that, with the addition of Gr, rheological properties such as the field-dependent modulus can be improved, particularly at low strain amplitudes. It is also demonstrated that the addition of Gr in MRE can contribute to the likely use of force detection in tactile sensing devices.