Cargando…
New Rigid Polycyclic Bis(phosphane) for Asymmetric Catalysis
A simple, highly efficient synthesis of a series of novel chiral non-racemic rigid tetracyclic phosphorus ligands, applicable in important chemical asymmetric transformations, was performed. In a tandem cross-coupling/C-H bond activation reaction, a well-recognised and readily available ligand (R,R)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385021/ https://www.ncbi.nlm.nih.gov/pubmed/30764489 http://dx.doi.org/10.3390/molecules24030571 |
Sumario: | A simple, highly efficient synthesis of a series of novel chiral non-racemic rigid tetracyclic phosphorus ligands, applicable in important chemical asymmetric transformations, was performed. In a tandem cross-coupling/C-H bond activation reaction, a well-recognised and readily available ligand (R,R)-NORPHOS was used as the starting material. The palladium complexes of new ligands were obtained and characterised on the example of a crystalline dichloropalladium complex of [(1R,2R,9S,10S,11R,12R)-4-phenyltetracyclo[8.2.1.0(2,9).0(3,8)]trideca-3,5,7-triene-11,12-diyl]bis(diphenylphosphane). A notably high activity and stereoselectivity of the palladium catalysts based on the new ligands were confirmed in a model asymmetric allylic substitution reaction. Herein, we discuss the geometry of the palladium complexes formed and its impact on the efficiency of the catalysts. A comparison of their geometric features with other bis(phosphane) ligand complexes found in the Cambridge Structural Database and built density functional theory (DFT) commutated models is also presented and rationalised. |
---|