Cargando…
Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables
Breast cancer is a heterogeneous disease. Although gene expression profiling has led to the definition of several subtypes of breast cancer, the precise discovery of the subtypes remains a challenge. Clinical data is another promising source. In this study, clinical variables are utilized and integr...
Autores principales: | He, Zongzhen, Zhang, Junying, Yuan, Xiguo, Xi, Jianing, Liu, Zhaowen, Zhang, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385100/ https://www.ncbi.nlm.nih.gov/pubmed/30754661 http://dx.doi.org/10.3390/molecules24030631 |
Ejemplares similares
-
Network based stratification of major cancers by integrating somatic mutation and gene expression data
por: He, Zongzhen, et al.
Publicado: (2017) -
Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods
por: He, Zongzhen, et al.
Publicado: (2021) -
Author Correction: Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations
por: Tuo, Shouheng, et al.
Publicado: (2018) -
Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations
por: Tuo, Shouheng, et al.
Publicado: (2017) -
FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm
por: Tuo, Shouheng, et al.
Publicado: (2016)