Cargando…

Influence of Prior Martensite on Bainite Transformation, Microstructures, and Mechanical Properties in Ultra-Fine Bainitic Steel

A multiphase microstructure comprising of different volume fractions of prior martensite and ultra-fine bainite (bainitic ferrite and retained austenite) was obtained by quenching to certain temperatures, followed by isothermal bainitic transformation. The effect of the prior martensite transformati...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Hui, Feng, Xianying, Zhao, Aimin, Li, Qiang, Ma, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385105/
https://www.ncbi.nlm.nih.gov/pubmed/30759721
http://dx.doi.org/10.3390/ma12030527
Descripción
Sumario:A multiphase microstructure comprising of different volume fractions of prior martensite and ultra-fine bainite (bainitic ferrite and retained austenite) was obtained by quenching to certain temperatures, followed by isothermal bainitic transformation. The effect of the prior martensite transformation on the bainitic transformation behavior, microstructures, and mechanical properties were discussed. The results showed that the prior martensite accelerated the subsequent low-temperature bainite transformation, and the incubation period and completion time of the bainite reaction were significantly shortened. This phenomenon was attributed to the enhanced nucleation ratio caused by the introduced strain in austenite, due to the formation of prior martensite and a carbon partitioning between the prior martensite and retained austenite. Moreover, the prior martensite could influence the crystal growth direction of bainite ferrite, refine bainitic ferrite plates, and reduce the dimension of blocky retained austenite, all of which were responsible for improving the mechanical properties of the ultra-fine bainitic steel. When the content of the prior martensite reached 15%, the investigated steels had the best performance, which were 1800 MPa and 21% for the tensile strength and elongation, respectively. Unfortunately, the increased content of the prior martensite could lead to a worsening of the impact toughness.