Cargando…
Asymmetric independence modeling identifies novel gene-environment interactions
Most genetic or environmental factors work together in determining complex disease risk. Detecting gene-environment interactions may allow us to elucidate novel and targetable molecular mechanisms on how environmental exposures modify genetic effects. Unfortunately, standard logistic regression (LR)...
Autores principales: | Yu, Guoqiang, Miller, David J., Wu, Chiung-Ting, Hoffman, Eric P., Liu, Chunyu, Herrington, David M., Wang, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385186/ https://www.ncbi.nlm.nih.gov/pubmed/30792419 http://dx.doi.org/10.1038/s41598-019-38983-z |
Ejemplares similares
-
Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues
por: Wang, Niya, et al.
Publicado: (2016) -
Data-driven detection of subtype-specific differentially expressed genes
por: Chen, Lulu, et al.
Publicado: (2021) -
COT: an efficient and accurate method for detecting marker genes among many subtypes
por: Lu, Yingzhou, et al.
Publicado: (2022) -
Comparative assessment and novel strategy on methods for imputing proteomics data
por: Shen, Minjie, et al.
Publicado: (2022) -
Comparative analysis of methods for detecting interacting loci
por: Chen, Li, et al.
Publicado: (2011)