Cargando…
A nature inspired modularity function for unsupervised learning involving spatially embedded networks
The quality of network clustering is often measured in terms of a commonly used metric known as “modularity”. Modularity compares the clusters found in a network to those present in a random graph (a “null model”). Unfortunately, modularity is somewhat ill suited for studying spatially embedded netw...
Autores principales: | Kishore, Raj, Gogineni, Ajay K., Nussinov, Zohar, Sahu, Kisor K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385190/ https://www.ncbi.nlm.nih.gov/pubmed/30796343 http://dx.doi.org/10.1038/s41598-019-39180-8 |
Ejemplares similares
-
Kinetic instability, symmetry breaking and role of geometric constraints on the upper bounds of disorder in two dimensional packings
por: Kishore, Raj, et al.
Publicado: (2016) -
Unsupervised online multitask learning of behavioral sentence embeddings
por: Tseng, Shao-Yen, et al.
Publicado: (2019) -
Natural computing for unsupervised learning
por: Li, Xiangtao, et al.
Publicado: (2018) -
Unsupervised Word Embedding Learning by Incorporating Local and Global Contexts
por: Meng, Yu, et al.
Publicado: (2020) -
Unsupervised learning of Swiss population spatial distribution
por: Kanevski, Mikhail
Publicado: (2021)