Cargando…
Long non-coding RNA Irm enhances myogenic differentiation by interacting with MEF2D
Recent studies suggest important roles for long non-coding RNAs as essential regulators of myogenic differentiation. Here, we report that lncRNA Irm is upregulated during myogenesis. Functional analyses show that the overexpression of Irm enhances myogenic differentiation, whereas the inhibition of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385193/ https://www.ncbi.nlm.nih.gov/pubmed/30792383 http://dx.doi.org/10.1038/s41419-019-1399-2 |
Sumario: | Recent studies suggest important roles for long non-coding RNAs as essential regulators of myogenic differentiation. Here, we report that lncRNA Irm is upregulated during myogenesis. Functional analyses show that the overexpression of Irm enhances myogenic differentiation, whereas the inhibition of Irm has completely opposite effects in vitro. Notably, the inhibition of Irm blocks damage-induced muscle regeneration in vivo. Mechanistically, Irm regulates the expression of myogenic genes by directly binding to MEF2D, which in turn promotes the assembly of MyoD/MEF2D on the regulatory elements of target genes. Collectively, we have identified a novel lncRNA that interacts with MEF2D to regulate myogenesis. |
---|