Cargando…

Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation

Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabré, Gisela, Garrido-Charles, Aida, Moreno, Miquel, Bosch, Miquel, Porta-de-la-Riva, Montserrat, Krieg, Michael, Gascón-Moya, Marta, Camarero, Núria, Gelabert, Ricard, Lluch, José M., Busqué, Félix, Hernando, Jordi, Gorostiza, Pau, Alibés, Ramon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385291/
https://www.ncbi.nlm.nih.gov/pubmed/30796228
http://dx.doi.org/10.1038/s41467-019-08796-9
Descripción
Sumario:Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions.