Cargando…
Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network
More and more research works have indicated that microRNAs (miRNAs) play indispensable roles in exploring the pathogenesis of diseases. Detecting miRNA-disease associations by experimental techniques in biology is expensive and time-consuming. Hence, it is important to propose reliable and accurate...
Autores principales: | Yu, Dong-Ling, Ma, Yuan-Lin, Yu, Zu-Guo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385311/ https://www.ncbi.nlm.nih.gov/pubmed/30792474 http://dx.doi.org/10.1038/s41598-019-39226-x |
Ejemplares similares
-
MSF-UBRW: An Improved Unbalanced Bi-Random Walk Method to Infer Human lncRNA-Disease Associations
por: Dai, Lingyun, et al.
Publicado: (2022) -
Three-Layer Heterogeneous Network Combined With Unbalanced Random Walk for miRNA-Disease Association Prediction
por: Yu, Limin, et al.
Publicado: (2020) -
Finding Lung-Cancer-Related lncRNAs Based on Laplacian Regularized Least Squares With Unbalanced Bi-Random Walk
por: Guo, Zhifeng, et al.
Publicado: (2022) -
VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares()
por: Shen, Ling, et al.
Publicado: (2022) -
Drug repositioning based on individual bi-random walks on a heterogeneous network
por: Wang, Yuehui, et al.
Publicado: (2019)