Cargando…
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
Molecular dynamics simulations are often key to the understanding of the mechanism, rate and yield of chemical reactions. One current challenge is the in-depth analysis of the large amount of data produced by the simulations, in order to produce valuable insight and general trends. In the present st...
Autores principales: | Häse, Florian, Fdez. Galván, Ignacio, Aspuru-Guzik, Alán, Lindh, Roland, Vacher, Morgane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385677/ https://www.ncbi.nlm.nih.gov/pubmed/30881655 http://dx.doi.org/10.1039/c8sc04516j |
Ejemplares similares
-
Restricted-Variance Molecular Geometry Optimization
Based on Gradient-Enhanced Kriging
por: Raggi, Gerardo, et al.
Publicado: (2020) -
Understanding
Polaritonic Chemistry from Ab Initio
Quantum Electrodynamics
por: Ruggenthaler, Michael, et al.
Publicado: (2023) -
Designing and understanding light-harvesting devices with machine learning
por: Häse, Florian, et al.
Publicado: (2020) -
Discovering chemistry with an ab initio nanoreactor
por: Wang, Lee-Ping, et al.
Publicado: (2014) -
Phoenics: A Bayesian Optimizer for Chemistry
por: Häse, Florian, et al.
Publicado: (2018)