Cargando…

De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization

Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factoriza...

Descripción completa

Detalles Bibliográficos
Autores principales: Levitin, Hanna Mendes, Yuan, Jinzhou, Cheng, Yim Ling, Ruiz, Francisco JR, Bush, Erin C, Bruce, Jeffrey N, Canoll, Peter, Iavarone, Antonio, Lasorella, Anna, Blei, David M, Sims, Peter A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386217/
https://www.ncbi.nlm.nih.gov/pubmed/30796088
http://dx.doi.org/10.15252/msb.20188557
_version_ 1783397337533513728
author Levitin, Hanna Mendes
Yuan, Jinzhou
Cheng, Yim Ling
Ruiz, Francisco JR
Bush, Erin C
Bruce, Jeffrey N
Canoll, Peter
Iavarone, Antonio
Lasorella, Anna
Blei, David M
Sims, Peter A
author_facet Levitin, Hanna Mendes
Yuan, Jinzhou
Cheng, Yim Ling
Ruiz, Francisco JR
Bush, Erin C
Bruce, Jeffrey N
Canoll, Peter
Iavarone, Antonio
Lasorella, Anna
Blei, David M
Sims, Peter A
author_sort Levitin, Hanna Mendes
collection PubMed
description Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA‐seq. scHPF does not require prior normalization and captures statistical properties of single‐cell data better than other methods in benchmark datasets. Applied to scRNA‐seq of the core and margin of a high‐grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma‐infiltrated margins and associated with inferior survival in glioblastoma.
format Online
Article
Text
id pubmed-6386217
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63862172019-03-04 De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization Levitin, Hanna Mendes Yuan, Jinzhou Cheng, Yim Ling Ruiz, Francisco JR Bush, Erin C Bruce, Jeffrey N Canoll, Peter Iavarone, Antonio Lasorella, Anna Blei, David M Sims, Peter A Mol Syst Biol Methods Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA‐seq. scHPF does not require prior normalization and captures statistical properties of single‐cell data better than other methods in benchmark datasets. Applied to scRNA‐seq of the core and margin of a high‐grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma‐infiltrated margins and associated with inferior survival in glioblastoma. John Wiley and Sons Inc. 2019-02-22 /pmc/articles/PMC6386217/ /pubmed/30796088 http://dx.doi.org/10.15252/msb.20188557 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods
Levitin, Hanna Mendes
Yuan, Jinzhou
Cheng, Yim Ling
Ruiz, Francisco JR
Bush, Erin C
Bruce, Jeffrey N
Canoll, Peter
Iavarone, Antonio
Lasorella, Anna
Blei, David M
Sims, Peter A
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title_full De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title_fullStr De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title_full_unstemmed De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title_short De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
title_sort de novo gene signature identification from single‐cell rna‐seq with hierarchical poisson factorization
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386217/
https://www.ncbi.nlm.nih.gov/pubmed/30796088
http://dx.doi.org/10.15252/msb.20188557
work_keys_str_mv AT levitinhannamendes denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT yuanjinzhou denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT chengyimling denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT ruizfranciscojr denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT busherinc denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT brucejeffreyn denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT canollpeter denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT iavaroneantonio denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT lasorellaanna denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT bleidavidm denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization
AT simspetera denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization