Cargando…
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factoriza...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386217/ https://www.ncbi.nlm.nih.gov/pubmed/30796088 http://dx.doi.org/10.15252/msb.20188557 |
_version_ | 1783397337533513728 |
---|---|
author | Levitin, Hanna Mendes Yuan, Jinzhou Cheng, Yim Ling Ruiz, Francisco JR Bush, Erin C Bruce, Jeffrey N Canoll, Peter Iavarone, Antonio Lasorella, Anna Blei, David M Sims, Peter A |
author_facet | Levitin, Hanna Mendes Yuan, Jinzhou Cheng, Yim Ling Ruiz, Francisco JR Bush, Erin C Bruce, Jeffrey N Canoll, Peter Iavarone, Antonio Lasorella, Anna Blei, David M Sims, Peter A |
author_sort | Levitin, Hanna Mendes |
collection | PubMed |
description | Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA‐seq. scHPF does not require prior normalization and captures statistical properties of single‐cell data better than other methods in benchmark datasets. Applied to scRNA‐seq of the core and margin of a high‐grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma‐infiltrated margins and associated with inferior survival in glioblastoma. |
format | Online Article Text |
id | pubmed-6386217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63862172019-03-04 De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization Levitin, Hanna Mendes Yuan, Jinzhou Cheng, Yim Ling Ruiz, Francisco JR Bush, Erin C Bruce, Jeffrey N Canoll, Peter Iavarone, Antonio Lasorella, Anna Blei, David M Sims, Peter A Mol Syst Biol Methods Common approaches to gene signature discovery in single‐cell RNA‐sequencing (scRNA‐seq) depend upon predefined structures like clusters or pseudo‐temporal order, require prior normalization, or do not account for the sparsity of single‐cell data. We present single‐cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA‐seq. scHPF does not require prior normalization and captures statistical properties of single‐cell data better than other methods in benchmark datasets. Applied to scRNA‐seq of the core and margin of a high‐grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma‐infiltrated margins and associated with inferior survival in glioblastoma. John Wiley and Sons Inc. 2019-02-22 /pmc/articles/PMC6386217/ /pubmed/30796088 http://dx.doi.org/10.15252/msb.20188557 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Levitin, Hanna Mendes Yuan, Jinzhou Cheng, Yim Ling Ruiz, Francisco JR Bush, Erin C Bruce, Jeffrey N Canoll, Peter Iavarone, Antonio Lasorella, Anna Blei, David M Sims, Peter A De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title |
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title_full |
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title_fullStr |
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title_full_unstemmed |
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title_short |
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization |
title_sort | de novo gene signature identification from single‐cell rna‐seq with hierarchical poisson factorization |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386217/ https://www.ncbi.nlm.nih.gov/pubmed/30796088 http://dx.doi.org/10.15252/msb.20188557 |
work_keys_str_mv | AT levitinhannamendes denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT yuanjinzhou denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT chengyimling denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT ruizfranciscojr denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT busherinc denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT brucejeffreyn denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT canollpeter denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT iavaroneantonio denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT lasorellaanna denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT bleidavidm denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization AT simspetera denovogenesignatureidentificationfromsinglecellrnaseqwithhierarchicalpoissonfactorization |