Cargando…
Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing
One of the most striking patterns at the land–ocean interface is the massive increase of chlorophyll-a (CHL) from continental shelves towards the coast, a phenomenon that is classically linked to physical features. Here I propose that the coastal–offshore CHL gradient in a shallow sea has biological...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386242/ https://www.ncbi.nlm.nih.gov/pubmed/30794602 http://dx.doi.org/10.1371/journal.pone.0212143 |
_version_ | 1783397343121375232 |
---|---|
author | Wirtz, Kai W. |
author_facet | Wirtz, Kai W. |
author_sort | Wirtz, Kai W. |
collection | PubMed |
description | One of the most striking patterns at the land–ocean interface is the massive increase of chlorophyll-a (CHL) from continental shelves towards the coast, a phenomenon that is classically linked to physical features. Here I propose that the coastal–offshore CHL gradient in a shallow sea has biological origins related to phytoplankton mortality that are neglected in state-of-the-art biogeochemical models. I integrate a trait-based ecosystem model into a modular coupling framework that is applied to the southern North Sea (SNS). The coupled model very well reproduces daily, seasonal and inter-annual (2000-2014) dynamics and meso-scale patterns in macronutrients, zooplankton biomass, and CHL as observed in situ and by remote sensors. Numerical experiments reveal that coast–offshore CHL gradients may predominantly arise from a trophic effect as resolved by an increase in carnivorous grazing towards shallow waters. This carnivory gradient reflects higher near-coast abundance of juvenile fish and benthic filter feeders. Furthermore, the temporal evolution of CHL can be much affected by viral infection as a fast-responding loss process at intermediate to high phytoplankton concentrations. Viral control in the model also prevents excessive and unrealistic blooms during late spring. Herbivores as often only ecological factor considered for explaining the spatio-temporal phytoplankton distribution are in this study supplemented by pathogens as well as pelagic and benthic carnivores as powerful agents, which are barely represented in current modeling but can mediate physical drivers of coastal ecosystems. |
format | Online Article Text |
id | pubmed-6386242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63862422019-03-09 Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing Wirtz, Kai W. PLoS One Research Article One of the most striking patterns at the land–ocean interface is the massive increase of chlorophyll-a (CHL) from continental shelves towards the coast, a phenomenon that is classically linked to physical features. Here I propose that the coastal–offshore CHL gradient in a shallow sea has biological origins related to phytoplankton mortality that are neglected in state-of-the-art biogeochemical models. I integrate a trait-based ecosystem model into a modular coupling framework that is applied to the southern North Sea (SNS). The coupled model very well reproduces daily, seasonal and inter-annual (2000-2014) dynamics and meso-scale patterns in macronutrients, zooplankton biomass, and CHL as observed in situ and by remote sensors. Numerical experiments reveal that coast–offshore CHL gradients may predominantly arise from a trophic effect as resolved by an increase in carnivorous grazing towards shallow waters. This carnivory gradient reflects higher near-coast abundance of juvenile fish and benthic filter feeders. Furthermore, the temporal evolution of CHL can be much affected by viral infection as a fast-responding loss process at intermediate to high phytoplankton concentrations. Viral control in the model also prevents excessive and unrealistic blooms during late spring. Herbivores as often only ecological factor considered for explaining the spatio-temporal phytoplankton distribution are in this study supplemented by pathogens as well as pelagic and benthic carnivores as powerful agents, which are barely represented in current modeling but can mediate physical drivers of coastal ecosystems. Public Library of Science 2019-02-22 /pmc/articles/PMC6386242/ /pubmed/30794602 http://dx.doi.org/10.1371/journal.pone.0212143 Text en © 2019 Kai W. Wirtz http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wirtz, Kai W. Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title | Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title_full | Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title_fullStr | Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title_full_unstemmed | Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title_short | Physics or biology? Persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
title_sort | physics or biology? persistent chlorophyll accumulation in a shallow coastal sea explained by pathogens and carnivorous grazing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386242/ https://www.ncbi.nlm.nih.gov/pubmed/30794602 http://dx.doi.org/10.1371/journal.pone.0212143 |
work_keys_str_mv | AT wirtzkaiw physicsorbiologypersistentchlorophyllaccumulationinashallowcoastalseaexplainedbypathogensandcarnivorousgrazing |