Cargando…
Using natural language processing and machine learning to classify health literacy from secure messages: The ECLIPPSE study
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of t...
Autores principales: | Balyan, Renu, Crossley, Scott A., Brown, William, Karter, Andrew J., McNamara, Danielle S., Liu, Jennifer Y., Lyles, Courtney R., Schillinger, Dean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386302/ https://www.ncbi.nlm.nih.gov/pubmed/30794616 http://dx.doi.org/10.1371/journal.pone.0212488 |
Ejemplares similares
-
The Next Frontier in Communication and the ECLIPPSE Study: Bridging the Linguistic Divide in Secure Messaging
por: Schillinger, Dean, et al.
Publicado: (2017) -
Employing computational linguistics techniques to identify limited patient health literacy: Findings from the ECLIPPSE study
por: Schillinger, Dean, et al.
Publicado: (2020) -
Precision communication: Physicians’ linguistic adaptation to patients’ health literacy
por: Schillinger, Dean, et al.
Publicado: (2021) -
Computer use, language, and literacy in safety net clinic communication
por: Ratanawongsa, Neda, et al.
Publicado: (2017) -
Connecting the Dots: Health Information Technology Expansion and Health Disparities
por: Lyles, Courtney, et al.
Publicado: (2015)